Расчет страховой премии КАСКО 8-926-187-79-27 auto-insure.ru.
АВТО страхование +




Магнитный двигатель тесла


Магнитный двигатель: миф или реальность.

Магнитный двигатель – один из наиболее вероятных вариантов «вечного двигателя». Идея его создания была высказана ещё очень давно, однако до сих пор он не был создан. Существует множество устройств, которые на шаг или несколько шагов приближают ученых к созданию этого двигателя, однако ни одно из них не доведено до логического завершения, следовательно, о практическом применении еще нет речи. Существует и множество мифов, связанных с этими устройствами.

Магнитный двигатель – это не обычный агрегат, так как он не потребляет никакой энергии. Движущей силой являются только магнитные свойства элементов. Конечно, электромоторы тоже используют магнитные вещества ферромагнетиков, однако в движение магниты приводятся под действием электрического тока, что уже противоречит главному принципу вечного двигателя. В магнитном двигателе задействуется влияние магнитов на другие объекты, под воздействием которых они начинают двигаться, вращая турбину. Прообразом такого двигателя могут стать многие офисные аксессуары, в которых непрерывно двигаются различные шарики или плоскости. Однако для движения там тоже используются батарейки (источник постоянного тока).

Никола Тесла был одним из первых ученых, серьезно занявшихся созданием магнитного двигателя. Его двигатель содержал турбину, катушку, провода, соединяющие данные объекты. В катушку вкладывался небольшой магнит таким образом, чтобы он захватывал как минимум два её витка. После придания турбине небольшого толчка (раскручивания) она начинала двигаться с неимоверной скоростью. Это движение будет вечным. Магнитный двигатель Теслы является практически идеальным вариантом. Единственным его недостатком является то, что турбине необходимо придать первоначальную скорость.

Магнитный двигатель Перендева – другой возможный вариант, однако он гораздо более сложный. Он представляет собой кольцо из диэлектрического материала (чаще всего древесина) с вмонтированными в него магнитами, наклоненными под определенным углом. В центре располагался ещё один магнит. Такая схема тоже является неидеальной, ведь для запуска двигателя нужен толчок.


Основной проблемой создания такого вечного двигателя является склонность магнитов к постоянному механическому движению. Два сильных магнита будут двигаться до тех пор, пока их противоположные полюса не соприкоснутся. Из-за этого магнитный двигатель не может правильно работать. Эту проблему невозможно решить при современных возможностях человечества.

Создание идеального магнитного двигателя привело бы человечество к источнику вечной энергии. В таком случае все существующие виды электростанций можно было бы с легкостью упразднить, так как магнитный двигатель стал бы не только вечным, но и самым дешевым и безопасным вариантом получения энергии. Но нельзя определенно сказать, будет ли магнитный двигатель лишь источником энергии или его можно будет использовать не только в мирных целях. Этот вопрос существенно меняет положение дел и заставляет задуматься.

Вечный двигатель на магнитах — блог Мира Магнитов

Со времен обнаружения магнетизма идея создать вечный двигатель на магнитах не покидает самые светлые умы человечества. До сих пор так и не удалось создать механизм с коэффициентом полезного действия больше единицы, для стабильной работы которого не требовалось бы внешнего источника энергии. На самом деле концепция вечного двигателя в современном виде вовсе и не требует нарушения основных постулатов физики. Главная задача изобретателей состоит в том, чтобы максимально приблизится к стопроцентному КПД и обеспечить продолжительную работу устройства при минимальных затратах.

Реальные перспективы создания вечного двигателя на магнитах

Противники теории создания вечного двигателя говорят о невозможности нарушения закона о сохранении энергии. Действительно, нет совершенно никаких предпосылок к тому, чтобы получить энергию из ничего. С другой стороны, магнитное поле – это вовсе не пустота, а особый вид материи, плотность которого может достигать 280 кДж/м³. Именно это значение и является потенциальной энергией, которую теоретически может использовать вечный двигатель на постоянных магнитах. Несмотря на отсутствие готовых образцов в общем доступе, о возможности существования подобных устройств говорят многочисленные патенты, а также факт наличия перспективных разработок, которые остаются засекреченными еще с советских времен.

Норвежский художник Рейдар Финсруд создал свой вариант вечного двигателя на магнитах


К созданию подобных электрогенераторов приложили силы знаменитые физики-ученые: Никола Тесла, Минато, Василий Шкондин, Говард Джонсон и Николай Лазарев. Следует сразу оговориться, что создаваемые с помощью магнитов двигатели называются «вечными» условно — магнит теряет свои свойства через пару сотен лет, а вместе с ним прекратит работу и генератор.
 

Самые известные аналоги вечного двигателя магнитах

Многочисленные энтузиасты стараются создать вечный двигатель на магнитах своими руками по схеме, в которой вращательное движение обеспечивается взаимодействием магнитных полей. Как известно, одноименные полюса отталкиваются друг от друга. Именно этот эффект и лежит в основе практически всех подобных разработок. Грамотное использование энергии отталкивания одинаковых полюсов магнита и притяжения разноименных полюсов в замкнутом контуре позволяет обеспечить длительное безостановочное вращение установки без приложения внешней силы.

Антигравитационный магнитный двигатель Лоренца

Двигатель Лоренца можно сделать самостоятельно с использованием простых материалов

Если вы хотите собрать вечный двигатель на магнитах своими руками, то обратите внимание на разработки Лоренца. Антигравитационный магнитный двигатель его авторства считается наиболее простым в реализации. В основе этого устройства лежит использование двух дисков с разными зарядами. Их наполовину помещают в полусферический магнитный экран из сверхпроводника, который полностью выталкивает из себя магнитные поля. Такое устройство необходимо для изоляции половин дисков от внешнего магнитного поля. Запуск этого двигателя выполняется путем принудительного вращения дисков навстречу друг другу. По сути, диски в получившейся система являются парой полувитков с током, на открытые части которых будут воздействовать силы Лоренца.

Асинхронный магнитный двигатель Николы Тесла

Асинхронный "вечный" двигатель на постоянных магнитах, созданный Никола Тесла, вырабатывает электричество за счет постоянно вращающегося магнитного поля. Конструкция довольно сложная и трудно воспроизводимая в домашних условиях.

Вечный двигатель на постоянных магнитах Николы Тесла

«Тестатика» Пауля Баумана

Одна из самых известных разработок – это «тестатика» Баумана. Устройство напоминает своей конструкцией простейшую электростатическую машину с лейденскими банками. «Тестатик» состоит из пары акриловых дисков (для первых экспериментов использовались обычные музыкальные пластинки), на которые наклеены 36 узких и тонких полосок алюминия.
Кадр из документального фильма: к Тестатике подключили 1000-ваттную лампу. Слева - изобретатель Пауль Бауман

После того, как диски толкали пальцами в противоположные стороны, запущенный двигатель продолжал работать неограниченно долгое время со стабильной скоростью вращения дисков на уровне 50-70 оборотов в минуту. В электроцепи генератора Пауля Баумана удается развить напряжение до 350 вольт с силой тока до 30 Ампер. Из-за небольшой механической мощности это скорее не вечный двигатель, а генератор на магнитах.
 

Вакуумный триодный усилитель Свита Флойда

Сложность воспроизведения устройства Свита Флойда заключается не в его конструкции, а в технологии изготовления магнитов. В основе этого двигателя используются два ферритовых магнита с габаритами 10х15х2,5 см, а также катушки без сердечников, из которых одна является рабочей с несколькими сотнями витков, а еще две – возбуждающие. Для запуска триодного усилителя необходима простая карманная батарейка 9В. После включения устройство может работать очень долго, самостоятельно питая себя по аналогии с автогенератором. По утверждениям Свита Флойда, от работающей установки удалось получить выходное напряжение в 120 вольт с частотой 60 Гц, мощность которого достигала 1 кВт.

Роторный кольцар Лазарева

Большой популярностью пользуется схема вечного двигателя на магнитах на основе проекта Лазарева. На сегодняшний день его роторный кольцар считается устройством, реализация которая максимально близка к концепции вечного двигателя. Важное преимущество разработки Лазарева состоит в том, что даже без профильных знаний и серьезный затрат можно собрать подобный вечный двигатель на неодимовых магнитах своими руками. Такое устройство представляет собой емкость, разделенную пористой перегородкой на две части. Автор разработки использовал в качестве перегородки специальный керамический диск. В него устанавливается трубка, а в емкость заливается жидкость. Для этого оптимально подходят улетучивающиеся растворы (например, бензин), но можно использовать и простую водопроводную воду.
Механизм работы двигателя Лазарева очень просто. Сначала жидкость подается через перегородку вниз емкости. Под давлением раствор начинает подниматься по трубке. Под получившейся капельницей размещают колесо с лопастями, на которых устанавливают магниты. Под силой падающих капель колесо вращается, образуя постоянное магнитное поле. На основе этой разработки успешно создан самовращающийся магнитный электродвигатель, на которой зарегистрировало патент одно отечественное предприятие.

Мотор-колесо Шкондина

Если вы ищете интересные варианты, как сделать вечный двигатель из магнитов, то обязательно обратите внимание на разработку Шкондина. Конструкцию его линейного двигателя можно охарактеризовать как «колесо в колесе». Это простое, но в то же время производительное устройство успешно используется для велосипедов, скутеров и другого транспорта. Импульсно-инерционное мотор-колесо представляет собой объединение магнитных дорожек, параметры которых динамично изменяются путем переключения обмоток электромагнитов.

Общая схема линейного двигателя Василия Шкондина

Ключевыми элементами устройства Шкондина являются внешний ротор и статор особой конструкции: расположение 11 пар неодимовых магнитов в вечном двигателе выполнено по кругу, что образует в общей сложности 22 полюса. На роторе установлены 6 электромагнитов в форме подков, которые установлены попарно и смещены друг к другу на 120°. Между полюсами электромагнитов на роторе и между магнитами на статоре одинаковое расстояние. Изменение положения полюсов магнитов относительно друг друга приводит к созданию градиента напряженности магнитного поля, образуя крутящий момент.

Неодимовый магнит в вечном двигателе на основе конструкции проекта Шкондина имеет ключевое значение. Когда электромагнит проходит через оси неодимовых магнитов, то образуется магнитный полюс, который является одноименным по отношению к преодоленному полюсу и противоположным по отношению к полюсу следующего магнита. Получается, что электромагнит всегда отталкивается от предыдущего магнита и притягивается к следующему. Такие воздействия и обеспечивают вращение обода. Обесточивание элетромагнита при достижении оси магнита на статоре обеспечивается размещением в этой точке токосъемника.

Житель г.Пущино Василий Шкондин изобрел не вечный двигатель, а высокоэффективные мотор-колёса для транспорта и генераторы электроэнергии.


Коэффициент полезного действия двигателя Шкондина составляет 83%. Конечно, это пока еще не полностью энергонезависимый вечный двигатель на неодимовых магнитах, но очень серьезный и убедительный шаг в правильном направлении. Благодаря особенностям конструкции устройства на холостом ходу удается вернуть часть энергии батареям (функция рекуперации).

Вечный двигатель Перендева

Альтернативный движок высокого качества, производящий энергию исключительно за счет магнитов. База — статичный и динамичный круги, на которых в задуманном порядке располагается несколько магнитов. Между ними возникает самооталкивающая сила, из-за которой и возникает вращение подвижного круга. Такой вечный двигатель считают очень выгодным в эксплуатации.
Вечный магнитный двигатель Перендева


Существует и множество других ЭМД, схожих по принципу действия и конструкции. Все они еще несовершенны, поскольку не способны долгое время функционировать без каких-либо внешних импульсов. Поэтому работа над созданием вечных генераторов не прекращается.

Как сделать вечный двигатель с помощью магнитов своими руками

Понадобится:
  •   3 вала
  •   Диск из люцита диаметром 4 дюйма
  •   2 люцитовых диска диаметром 2 дюйма
  •   12 магнитов
  •   Алюминиевый брусок

Валы прочно соединяются между собой. Причем один лежит горизонтально, а два другие расположены по краям. К центральному валу крепится большой диск. Остальные присоединяются к боковым. На дисках располагаются неодимовые магниты — 8 в середине и по 4 по бокам. Алюминиевый брусок служит основанием для конструкции. Он же обеспечивает и ускорение устройства.


Недостатки ЭМД

Планируя активно использовать подобные генераторы, следует соблюдать осторожность. Дело в том, что постоянная близость магнитного поля приводит к ухудшению самочувствия. К тому же для нормального функционирования устройства необходимо обеспечить ему специальные условия работы. Например, защитить от воздействия внешних факторов. Итоговая стоимость готовых конструкций получается высокой, а вырабатываемая энергия слишком мала. Поэтому и выгода от использования подобных конструкций сомнительна.
Экспериментируйте и создавайте собственные версии вечного двигателя. Все варианты разработок вечных двигателей продолжают совершенствоваться энтузиастами, а в сети можно обнаружить множество примеров реально достигнутых успехов. Интернет-магазин «Мир Магнитов» предлагает вам выгодно купить неодимовые магниты и своими руками собрать различные устройства, в которых бы шестеренки безостановочно крутились благодаря воздействиям сил отталкивания и притяжения магнитных полей. Выбирайте в представленном каталоге изделия с подходящими характеристиками (размеры, форма, мощность) и оформляйте заказ.

Катушка Тесла. Устройство и виды. Работа и применение

Знакомство с трансформатором Н. Тесла.

Новомодный феномен резонансного трансформатора Николы Тесла возник не давно, а Интернет забит фотографиями и интригующими видеосъемками молний и коронарных разрядов.

Вспомним, что трансформатор первоначально был предназначен не для показательного выступления в цирке, а для передачи радиосигналов на далекие расстояния. В связи с этим предлагаю ознакомиться с его принципом работы и найти ему практическое применение.

Трансформатор Тесла состоит из двух основных частей, см. рис.1а;

1. Генерирующей части, состоящей из высоковольтного источника питания, накопительного конденсатора С1, разрядника и катушки связи L1. Частота генерации зависит от напряжения питания, емкости конденсатора С1, характеризующее время разряда, а так же промежутком между электродами разрядника;

2. Резонансной катушки индуктивности L2, заземления и сферы, см. рис. 1а.

Если вглядеться в схему этого трансформатора внимательнее, то мы увидим известную схему последовательного колебательного контура, состоящего из катушки индуктивности L2 с открытой емкостью С, образованной между сферой и землей. Это открытый колебательный контур, который был открыт Дж. К. Максвеллом.

Обратимся к классической теории принципа действия открытого колебательного контура:

Как известно колебательный контур состоит из катушки индуктивности и конденсатора. Исследуем простейший колебательный контур, катушка которого состоит из одного витка, а конденсатор представляет собой две рядом расположенные металлические пластины. Подадим в разрыв индуктивности контура 1 переменное напряжение от генератора, см. рис.2а. В витке потечет переменный ток и создаст вокруг проводника магнитное поле. Это сможет подтвердить магнитный индикатор в виде витка, нагруженного лампочкой. Для того, что бы получить открытый колебательный контур, раздвинем пластины конденсатора. Мы наблюдаем, что лампа индикатора магнитного поля продолжает гореть. Чтобы лучше понять, что происходит в данном опыте, смотри рис. 2а. По витку контура 1

течёт ток проводимости, который вокруг себя создает магнитное поле Н, а между пластинами конденсатора – равный ему, так называемый,
ток смещения.
Несмотря на то, что между пластинами конденсатора нет тока проводимости, опыт показывает, что ток смещения создаёт такое же магнитное поле, как и ток проводимости. Первым, кто об этом догадался, был великий английский физик Дж. К. Максвелл.

В 60-х годах 19-го столетия, формулируя систему уравнений для описания электромагнитных явлений, Дж. К. Максвелл столкнулся с тем, что уравнение для магнитного поля постоянного тока и уравнение сохранения электрических зарядов переменных полей (уравнение непрерывности) несовместимы. Чтобы устранить противоречие, Максвелл, не имея на то никаких экспериментальных данных, постулировал, что магнитное поле порождается не только движением зарядов, но и изменением электрического поля, подобно тому, как электрическое поле порождается не только зарядами, но и изменением магнитного поля

. Величину где — электрическая индукция, которую он добавил к плотности тока проводимости, Максвелл назвал
током смещения
. У электромагнитной индукции появился магнитоэлектрический аналог, а уравнения поля обрели замечательную симметрию. Так, умозрительно был открыт один из фундаментальнейших законов природы, следствием которого является
существование электромагнитных волн
. В последствии Г.Герц опираясь на эту теорию доказал, что электромагнитное поле излучаемое электрическим вибратором равно полю излучаемое емкостным излучателем.

Раз так, убедимся еще раз, что происходит, когда закрытый колебательный контур превращается в открытый и как можно обнаружить электрическое поле Е ? Для этого рядом с колебательным контуром поместим индикатор электрического поля, это вибратор, в разрыв которого включена лампа накаливания, она пока не горит. Постепенно раскрываем контур, и мы наблюдаем, что лампа индикатора электрического поля загорается, рис. 2б. Электрическое поле теперь не сосредоточено между пластинами конденсатора, его силовые линии идут от одной пластины к другой через открытое пространство. Таким образом, мы имеем экспериментальное подтверждение утверждения Дж. К. Максвелла, что емкостной излучатель порождает электромагнитную волну. Никола Тесла обратил на этот факт внимание, что при помощи совсем не больших излучателей можно создать достаточно эффективный прибор для излучения электромагнитной волны. Так родился резонансный трансформатор Н. Тесла. Проверим и этот факт, для чего вновь рассмотрим назначение деталей трансформатора.

И так, сфера и заземление выполняют роль пластин открытого конденсатора. Геометрические размеры сферы и технические данные катушки индуктивности определяют частоту последовательного резонанса, которая должна совпадать с частотой генерации разрядника.

Иными словами, режим последовательного резонанса позволяет трансформатору Тесла достигать таких величин напряжений, что на поверхности сферы появляется коронарный разряд и даже молнии. Весь фокус состоит в том, что коэффициент трансформации резонансного трансформатора выше соотношения витков катушек L1/L2 и значительно выше, чем в трансформаторах с ферро сердечниками. Здесь индуктивность L2, сфера и заземление, представляют из себя открытый резонансный колебательный контур. Именно по этому трансформатор Тесла называется резонансным.

Рассмотрим работу трансформатора Тесла, как последовательный колебательный контур:

— Этот контур необходимо рассматривать как обычный LC – элемент, рис. 1а.б, а так же рис. 2а, где включены последовательно индуктивность L, открытый конденсатор С и сопротивление среды Rср. Угол сдвига фаз в последовательном колебательном контуре между напряжением и током равен нулю (φ=0), если ХL = — Хс, т.е. изменения тока и напряжения в нем происходят синфазно. Это явление называется резонансом напряжений

(последовательным резонансом). Следует отметить, что при понижении частоты от резонанса, ток в контуре уменьшается, а резонанс тока несет емкостной характер. При дальнейшей расстройке контура и понижении тока на 0,707, его фаза смещается на 45 градусов. При расстройке контура вверх по частоте, он приобретает индуктивный характер. Это явление часто используют в фазоинверторах.

Если мы рассмотрим схему изображенную на рис. 3, то мы сможем предоставить простые расчеты, из которых видно, что напряжение на пластинах излучателя вычисляется исходя из добротности контура Q, которая реально может находиться в пределах 20 – 50 и много выше.

Где полоса пропускания определяется добротностью контура:

Δf=fo/Q;

Тогда напряжение на пластинах излучателя будет выглядеть согласно следующей формуле:

U2= Q * U1.

В таблице 1 расчетные данные приведены для частоты 7.0 МГц не случайно, это дает возможность любому желающему коротковолновику провести радиолюбительский эксперимент в эфире. Здесь входное напряжение U1 условно взято за 100 Вольт, а добротность за 26.

Таблица 1.

f ( МГц) L (мкГн) ХL (Ом) C (пФ) — Xc (Ом) Δf (кГц) Q U 1/U 2 (В.)
7 30,4 1360 17 1340 270 26 100/2600

Напряжение U2 согласно расчетам составляет 2600В, что подтверждается практической работой трансформатора Тесла. Данное утверждение приемлемо в тех случаях, когда отсутствует изменение частоты или сопротивления нагрузки данного контура. В трансформаторе Н. Тесла оба фактора постоянны.

Полоса пропускания трансформатора Тесла зависит от нагрузки, т.е., чем выше связь открытого конденсатора С (сфера-земля) со средой, тем больше нагружен контур, тем шире его полоса пропускания. Тоже происходит с контуром, нагруженным активной нагрузкой. Таким образом, площадь пластин излучателя антенны определяет его емкость С и соответственно диктует ширину полосы пропускания. Тем не менее, здесь нужно понимать, что чрезмерное увеличение полосы пропускания за счет увеличения объема излучателей приведет к снижению добротности контура и соответственно приведет к уменьшению эффективности резонансного трансформатора и всего устройства в целом.

Подводя итог, мы приходим к выводу, что излучает не индуктивность трансформатора Тесла L2, а элементы открытого конденсатора (сфера-земля рис. 1а.) являющегося частью резонансной системы. Это емкостной излучатель с двумя полюсами, который создает вокруг себя мощное и концентрированное электромагнитное излучение. Трансформатор Тесла обладает особенностью накопления энергии, что характерно только последовательному LC – контуру, где суммарное выходное напряжение значительно превосходит входное, что наглядно видно из результатов таблицы. Данное свойство давно практикуют в промышленных радиоустройствах для повышения напряжения в устройствах с большим входным сопротивлением.

Таким образом, мы можем сделать следующий вывод:

Трансформатор Тесла

,
это высокодобротный последовательный колебательный контур, где сфера является открытым элементом, осуществляющим связь со средой. Индуктивность L является лишь закрытым элементом и резонансным трансформатором напряжения не участвующим в излучении.
Далее в тексте, будет удобно называть емкостной излучатель диполем Тесла. Это вполне справедливо, ведь «диполь» означает di(s)

дважды +
polos
полюс, что исключительно применимо к двухполюсным конструкциям, каковым и является резонансный трансформатор Николы Тесла с емкостной двухполюсной нагрузкой.

Внимательно изучив цели построения резонансного трансформатора Николы Тесла, невольно приходишь к выводу, что он был предназначен для передачи энергии на расстояние, но эксперимент был прерван, а потомкам остается догадываться о истинной цели этого чуда, конца 19 и начала 20 века. Не случайно Никола Тесла в своих записях оставил следующее изречение: — «Пусть будущее рассудит и оценит каждого по его трудам и достижениям. Настоящее принадлежит им, будущее, ради которого я работаю, принадлежит мне».

Резонансные элементы любого контура можно изменять в разных пределах и как с ними поступишь, так они и поведут себя. Можно увеличить индуктивность в этой конструкции и получить на поверхности сферы стримеры, коронарные разряды и даже молнии. Можно увеличить емкость и в режиме резонанса напряжений добиться максимальной отдачи сбалансированного электромагнитного поля. И все же Тесла был прав, когда отказался от металлического сердечника внутри повышающей катушки, ведь он вносил потери в том месте, где зарождалась электромагнитная волна.

Автор статьи повторил конструкцию трансформатора Тесла на частоте 7МГц. Параметры индуктивности и емкости сильно разнились, но результаты экспериментов привели к единственно правильному условию, когда ХL= -Хс стали соответствовать табличным данным (табл.1). Интересно то, что если уменьшать излучающую емкость, то для получения резонанса приходится увеличивать индуктивность. При этом, на краях излучателя и других неровностях, появляются стримеры (от англ. Streamer

). Streamer, это тускло видимая, ионизация воздуха (свечение ионов), создаваемая полем диполя. Это и есть резонансный трансформатор Тесла, каким мы его привыкли видеть на просторах Интернета.

Проверка принципа действия диполя Тесла на практике.

Для проведения экспериментов с трансформатором Тесла над конструкцией не пришлось долго думать, здесь помог радиолюбительский опыт. В качестве излучателей вместо сферы и земли были взяты две гофрированные алюминиевые (вентиляционные) трубы диаметром 120мм и длиной по 250 мм. Удобство применения заключалось в том, что их можно растягивать или сжимать как витки катушки, тем самым, меняя емкость контура в целом и соответственно соотношение L/С. «Трубы – емкости» располагались горизонтально на бамбуковой палке с расстоянием 100мм. Катушка индуктивности L2 (30 мкГн) проводом 2 мм, была вынесена ниже оси цилиндров на 50 см. с тем, что бы не создавать вихревых токов в сфере излучателей. Еще лучше будет, если катушку вынести за один из излучателей, располагая ее на одной оси с ними, где эл. магнитное поле минимально и имеет форму «пустой воронки». Катушка связи L1 (1 виток, 2мм), обеспечивала связь с трансивером мощностью 40 вт. Образованный, этими элементами колебательный контур был настроен в режиме последовательного резонанса, где было соблюдено правило, а именно ХL = -Хс. Катушкой L1, соответственно было настроено согласование импровизированного диполя Тесла с фидером 50 Ом. Фидер длиной 5 метров для чистоты эксперимента был обеспечен с обоих сторон ферритовыми фильтрами.

Для сравнения испытывалось три антенны:

  1. диполь Тесла (L= 0.7м, КСВ=1,1),
  2. разрезной укороченный диполь Герца (L = 2х0,7м, удлинительная катушка, фидер 5 метров защищенный ферритовыми фильтрами КСВ=1,0),
  3. горизонтальный полуволновой диполь Герца (L = 19,3м, фидер защищен ферритовыми фильтрами КСВ=1,05).

На расстоянии 3 км. в черте города был включен передатчик с постоянной несущей сигнала.

Диполь Тесла (7 МГц) и укороченный диполь с удлиняющей катушкой, по очереди размещались возле кирпичного здания на расстоянии всего 2 метра, и на момент эксперимента находились в равных условиях на высоте (10-11м).

В режиме приема диполь Тесла превосходил укороченный диполь Герца на 2-3 балла (12-20 дБ) по шкале S-метра трансивера и более.

За тем вывешивался, за ранее настроенный, полуволновый диполь Герца. Высота подвеса 10-11 м. на расстоянии от стен в 15-20м.

По усилению диполь Тесла уступал полуволновому диполю Герца примерно на 1 балл (6-8дБ). Диаграммы направленности всех антенн совпадали. Стоит отметить, что полуволновый диполь был размещен не в идеальных условиях, а практика построения диполя Тесла требует новых навыков. Все антенны находились внутри двора (четыре здания), как в экранированном котле.

Общие выводы.

Рассматриваемый диполь Тесла на практике работает почти как полноценный полуволновый диполь Герца, он подчиняется принципам двойственности, что не идет в разрез с теорией антенн. Не смотря на свои сверх — малые размеры (0,01- 0,02λ), диполь Тесла осуществляет связь с пространством в виде емкостных пластин, сферы, цилиндров и пр.. Напряжение и ток в момент последовательного резонанса синфазны. Соответственно создают в пространстве, вокруг излучателя, синфазное поле Е и поле Н, что приводит к размышлению о том, что поле диполя Тесла в пределах излучателей уже сформировано и имеет «мини-сферу». Следует вспомнить, что у диполя Герца сферой считается то место, где поле Е и поле Н находятся в фазе, а именно на расстоянии 2-3 длины волны. Таким образом, диполь Тесла имеет все основания для практических экспериментов в радиолюбительской службе в диапазонах коротких, средних и особенно длинных волн. Думаю, что любителям длинноволновой связи (137кГц) стоит обратить на этот эксперимент особое внимание. Здесь имеется огромный потенциал проявить свою смекалку в усовершенствовании емкостного излучателя и подтвердить высказывание Г. Герца в том, что уровень излучения емкостного излучателя равен уровню излучения электрического диполя.

Примечание:

Диполь Тесла относится к емкостным излучателям, не путать с полуволновым диполем Герца. Принципы их действия разнятся как, «водоплавающие от наземных», как катер от автомобиля, — мотор один, а движители разные.

UA9LBG. Сушко С.А.

Эффекты

Они связаны с формированием разного рода газовых разрядов в процессе функционирования устройства. Многие люди коллекционируют трансформаторы Тесла, чтобы иметь возможность наблюдать за захватывающими эффектами. Всего аппарат производит разряды четырех видов. Зачастую можно наблюдать, как разряды не только отходят от катушки, но и направлены от заземленных предметов в ее сторону. На них также могут возникать коронные свечения. Примечательно, что некоторые химические соединения (ионные) при нанесении на терминал могут изменить цвет разряда. К примеру, натриевые ионы делают спарк оранжевым, а борные – зеленым.

Трансформатор Тесла: принцип работы

Суть действия прибора можно объяснить на примере всем известных качелей. При их раскачивании в условиях принудительных колебаний амплитуда, которая будет максимальной, станет пропорциональной прилагаемому усилию. При раскачивании в свободном режиме максимальная амплитуда при тех же усилиях многократно возрастет. Такова суть и трансформатора Тесла. В качестве качелей в аппарате используется колебательный вторичный контур. Генератор играет роль прилагаемого усилия. При их согласованности (подталкивании в строго необходимые периоды времени) обеспечивается задающий генератор либо первичный контур (в соответствии с устройством).

Генерация

После того как будет достигнуто напряжение пробоя между электродами, в разряднике формируется электрический лавинообразный пробой газа. Происходит разряжение конденсатора на катушку. После этого резко снижается напряжение пробоя в связи с оставшимися ионами в газе (носителями заряда). Вследствие этого состоящая из конденсатора и первичной катушки цепь контура колебания через разрядник остается замкнутой. В ней образуются высокочастотные колебания. Они постепенно затухают, преимущественно вследствие потерь в разряднике, а также ухода на вторичную катушку электромагнитной энергии. Тем не менее колебания продолжаются, пока током создается достаточное количество зарядных носителей для поддержания в разряднике существенно меньшего напряжения пробоя, чем амплитуда колебаний LC-контура. Во вторичной цепи появляется резонанс. Это приводит к возникновению высокого напряжения на терминале.

RSG

Трансформатор Тесла высокой мощности включает в себя более сложную конструкцию разрядника. В частности, это касается модели RSG. Аббревиатура расшифровывается как Rotary Spark Gap. Ее можно перевести следующим образом: вращающийся/роторный искровой либо статический промежуток с дугогасительными (дополнительными) устройствами. В таком случае частота работы промежутка подбирается синхронно частоте конденсаторной подзарядки. Конструкция искрового роторного промежутка включает в себя двигатель (как правило, он электрический), диск (вращающийся) с электродами. Последние или замыкают, или приближаются к ответным компонентам для замыкания.

Выбор расположения контактов и скорости вращения вала основывается на необходимой частоте следования колебательных пачек. В соответствии с типом управления двигателем различают искровые роторные промежутки асинхронные и синхронные. Также применение искрового вращающегося промежутка значительно понижает вероятность образования паразитной дуги между электродами.

В некоторых случаях обычный разрядник заменяют многоступенчатым. Для охлаждения этот компонент иногда помещают в газообразные или жидкие диэлектрики (в масло, к примеру). В качестве типового приема гашения дуги статистического разрядника используется продувка электродов с помощью мощной воздушной струи. В ряде случаев трансформатор Тесла классической конструкции дополняется вторым разрядником. Задача этого элемента состоит в обеспечении защиты низковольтной (питающей) зоны от высоковольтных выбросов.

Применение прибора

На выходе можно получить напряжение в несколько миллионов вольт. Оно способно создавать в воздухе внушительные разряды. Последние, в свою очередь, могут обладать многометровой длиной. Эти явления очень привлекательны внешне для многих людей. Любителями трансформатор Тесла используется в декоративных целях.

Сам изобретатель применял аппарат для распространения и генерации колебаний, которые направлены на беспроводное управление приборами на расстоянии (радиоуправление), передачи данных и энергии. В начале ХХ столетия катушка Тесла стала использоваться в медицине. Больных обрабатывали высокочастотными слабыми токами. Они, протекая по тонкому поверхностному слою кожи, не вредили внутренним органам. При этом токи оказывали оздоравливающее и тонизирующее воздействие на организм. Кроме того, трансформатор используется при поджиге газоразрядных ламп и при поиске течей в вакуумных системах. Однако в наше время основным применением аппарата следует считать познавательно-эстетическое.

Бестопливный генератор. Что входит в комплект?

Электрогенератор является полностью автономным устройством и способен выработать электроэнергию для полной зарядки аккумуляторных батарей без применения топлива. Инерционное устройство можно скомбинировать с другими устройствами, которые уже установлены.

В комплектацию бестопливного электрогенератора входит:

  • алюминиевая коробка с клеткой Фарадея;
  • генератор необходимой мощности от 1 до 5 кВт;
  • контрольное устройство с функцией зарядки батарейки с импульсом до 2000 В;
  • 4 аккумуляторные батарейки для работы катушек.

Иногда по желанию заказчика могут добавляться конденсаторы различных мощностей, а также щиток резервного питания (в системах от 3 кВт).

Можно ли сделать бестопливный генератор своими руками

Если вы всё ещё сомневаетесь, попробуйте собрать такой генератор самостоятельно. В сети есть много разных схем по сбору БТГ в домашних условиях. Среди них нашлось два довольно простых способа: мокрый (или масляный) и сухой.

Масляный способ сбора БТГ

Вам потребуется:

  • Трансформатор переменного тока – необходим для создания постоянных сигналов тока;
  • Зарядное устройство – обеспечивает бесперебойную работу собранного устройства;
  • Аккумулятор (или обычная батарея) – помогает накоплению и сохранению энергии;
  • Усилитель мощности – увеличит подачу тока;

Трансформатор нужно подключить сначала к батарее, а затем к усилителю мощности. Теперь к этой конструкции подсоединяется зарядное устройство, и портативный БТГ готов!

Сухой способ

Вам потребуется:

  • Трансформатор;
  • Прототип генератора;
  • Незатухающие проводники;
  • Динатрон;
  • Сварка.

Объедините трансформатор с прототипом генератора при помощи незатухающих проводников. Используйте для этого сварку. Динатрон нужен для контроля работы готового прибора. Такой генератор должен проработать около 3 лет.

Успех и эффективность этих конструкций во многом зависят от вашей удачи. Она же потребуется, чтобы найти все необходимые элементы, указанные в инструкции. Но наверно вы уже догадались, что всё это вряд ли будет работать.

Где и как используется БТГ генератор

Существует множество разнообразных способов генерировать энергию от бестопливного двигателя или генератора. В каждой сфере применение это устройство, вне всяких сомнений, принесёт пользу. Ниже приведены краткие описания некоторых этих сфер.

На дорогах

Бестопливный генератор может спокойно заменить дизельные двигатели, используемые в подавляющем большинстве современных тяжелых транспортных средств, таких как грузовые автомобили, автобусы, поезда, крупногабаритные переносные силовые двигатели. А также в этот перечень входит большинство сельскохозяйственных и карьерных транспортных средств.

В воздухе

И бензиновые, и дизельные двигатели, используемые в самолетах, могут быть заменены на альтернативные источники энергии, в том числе на бестопливные электрогенераторы.

На воде

Бестопливные генераторы также могут служить заменой для высокоскоростных двигателей, которые имеются у яхт, кораблей и линий вдоль открытого моря.

Под землей

Бестопливные двигатели и генераторы также могут заменить дизельные двигатели, а также двигатели, которые используются при добыче полезных ископаемых во всем мире. Аналогичным образом бестопливные устройства заменяют двигатели, которые применяются для добычи и природных ресурсов, таких как разные драгоценные металлы, железная руда, уголь и попутный нефтяной газ.

В медицинских учреждениях

Устройства также могут заменить аварийные резервные генераторы, которые должны быть в каждом крупном медицинском учреждении или больнице, в связи с наличием возможных критических ситуаций.

В центрах обработки данных

Бестопливные генераторы могут быть использованы для компьютеров, а также если не заряжается телефон, то генератор может служить хорошим зарядным устройством для мобильного аппарата. Когда серверы и системы выходят из строя, связь может быть потеряна, рабочий процесс останавливается, данные могут быть утеряны и даже весь рабой процесс может быть полностью остановлен.

Также бестопливные генераторы электроэнергии можно устанавливать на боковых сторонах двухколесного транспортного средства. Это надо делать таким образом, чтобы по мере движения транспортного средства вентилятор начинал вращаться и вырабатывал дополнительную энергию.

Когда двигатели постоянного тока мощностью более 500 л. с. подключены к генератору переменного тока, мощность которого ниже, чем у двигателей постоянного тока, можно получить максимальную выходную мощность генератора.

Как сделать трансформатор Тесла?

Как выше было сказано, для упрощения конструкции используется биполярный элемент. Несомненно, намного лучше применить полевой транзистор. Но с биполярным проще работать тем, кто недостаточно опытен в сборке генераторов. Обмотка катушек связи и коллектора осуществляется проводом в 0.5-0.8 миллиметров. На высоковольтной детали провод берется 0.15-0.3 мм толщиной. Делается приблизительно 1000 витков. На «горячем» конце обмотки ставится спираль. Питание можно взять с трансформатора в 10 В, 1 А. При использовании питания от 24 В и более значительно увеличивается длина коронного разряда. Для генератора можно использовать транзистор КТ805ИМ.

БЕСТОПЛИВНЫЙ ДВИГАТЕЛЬ

Патент на безтопливный двигатель выдан Василию Алексеенко, русскому Левше, 10 июня 1999 года Российским агентством по патентам и товарным знакам. Двигатель не требует вообще никакого топлива: ни нефти, запасы которой ограничены, ни газа — ничего, что мы называем сырьем. Работает уникальный двигатель от энергии магнитных полей постоянных магнитов. Если один килограмм обычного магнита может притянуть или оттолкнуть 50 или 100 кг. массы, то мощные оксидно-бариевые способны то же самое проделывать с пятью тысячами килограммов массы. Такие мощные магниты, как уточняет изобретатель, не нужны. Годятся самые известные: один к пятидесяти или один к ста. С их помощью можно получить в двигателе, который сотворил русский Левша, 20 тысяч оборотов в минуту. Мощность придется даже гасить, используя передающее устройство. Постоянные магниты, от энергии которых работает двигатель, на нем и расположены Ротор своим магнитным полем отталкивается от такого же поля статора и начинает вращаться, а магнитное поле статора следует за ним и как бы его подгоняет, ускоряя вращение. Так можно добиться чудовищной мощности. Если такой двигатель использовать, скажем, в стиральной машине, вращение обеспечат крохотные магнитики.

Русский изобретатель из Перми А. Бакаев создал приставку к автодвигателям, которая позволяет автомобилям ездить на воде без каких-либо углеводородных добавок к ней. И это не фантастический проект. Он уже внедряется. Приставками оснащены уже более 3-х тысяч автомобилей, курсирующих по дорогам России. Это в буквальном смысле подарок автолюбителям. Использование приставок избавляет автомобилистов от затрат на бензин, а атмосферу — от вредных выбросов. Чтобы создать такую приставку, А. Бакаев сначала открыл новый тип расщепления, использовав его в своем уникальном изобретении.Другой русский ученый XX века, Б. Болотов, создал автодвигатель, которому нужна чуть ли не капля бензина, и то для первоначальной раскрутки. Двигателю, который он изобрел, не нужны ни коленчатый вал, ни цилиндры, ни вообще трущиеся детали. Их заменяют два диска на подшипниках с небольшим зазором между ними. В качестве топлива работает воздух, который на огромных оборотах разделяется на кислород и азот. При 90° градусах азот сгорает в кислороде, в результате чего двигатель массой 8 кг развивает мощность в 300 лошадиных сил.Помимо безтопливного двигателя Василия Алексеенко, русские изобретатели предложили еще несколько конструкций безтопливных двигателей. Они работают на принципиально новых источниках энергии: на энергии вакуума и других.

Источники: www.susam.ru, energetiku.jimdo.com, bankpatentov.ru, naked-science.ru, maksonovosti.livejournal.com

Война богов и людей

Много веков жизнь продолжалась согласно установленному порядку. Но однажды произошла война богов и людей. Этому предшествовал мятеж…

Было показано, что его попытка создать практически «вечный двигатель» удалась потому, что автор интуитивно понимал, а может прекрасно знал, но тщательно скрывал истину, как правильно надо создать магнит нужной формы и как правильно надо сопоставить магнитные поля магнитов ротора и статора, чтобы взаимодействие между ними привело к практически вечному вращению ротора. Для этого ему пришлось изогнуть роторные магниты так, что этот магнит в разрезе стал похож на бумеранг, слабоизогнутую подкову или банан.

Благодаря такой форме магнитные силовые линии роторного магнита оказались замкнутыми уже не в виде тора, а в виде «бублика», пусть и сплюснутого. И размещение такого магнитного «бублика» так, чтобы его плоскость была при максимальном приближении магнита ротора к магнитам статора приблизительно или преимущественно параллельна силовым линиям, исходящих от магнитов статора, позволило получить за счет эффекта Магнуса для эфирных потоков силу, которая обеспечила безостановочное вращение арматуры вокруг статора…

Конечно было бы лучше, если бы магнитный «бублик» роторного магнита был бы совсем параллельным силовым линиям, исходящих из полюсов магнитов статора, и тогда эффект Мёбиуса для магнитных потоков, которые есть потоки эфира, проявился бы с бОльшим эффектом. Но для того времени (более 30 лет назад) даже такое инженерное решение было огромным достижением, что, несмотря на запрет выдавать патенты на «вечные двигатели», Говарду Джонсону через несколько лет ожидания, патент получить удалось, так как, видимо, ему удалось убедить патентоведов реально действующим образцом своего магнитного мотора и магнитной дорожки. Но даже по прошествии 30 лет кто-то из власть имущих упорно не желает принять решение о массовом применении подобных двигателей в промышленности, в быту, на военных объектах и т.д.

Убедившись, что мотор Говарда Джонсона использует тот принцип, который понят мной, исходя их теории Эфира, я попытался проанализировать с этих же позиций еще один патент, который принадлежит русскому изобретателю Алексеенко Василию Ефимовичу. Патент был выдан еще в 1997 году, но поиск по Интернету показал, что наша власть и промышленники фактически игнорируют изобретение. Видимо в России еще много нефти и денег, поэтому чиновники предпочитают мягко спать и сладко есть, благо у них зарплата это позволяет. А в это время на нашу страну надвигается экономический, политический, экологический и идеологический кризис, которые могут перерасти в продовольственный и энергетические кризисы, а при нежелательном для нас развитии породить демографическую катастрофу. Но, как любили говорить некоторые царские военноначальники — не беда, бабы новых нарожают…

Предоставляю возможность самим читателям познакомиться с патентом Алексеенко В.Е. Он предложил 2 конструкции магнитных двигателей. Их недостатком является то, что их роторные магниты имеют довольно сложную форму. Но патентоведы, вместо того, чтобы помочь автору патента упростить конструкцию, ограничились формальной выдачей патента. Мне неизвестно, как Алексеенко В.Е. обошёл запрет на «вечные двигатели», но и на том спасибо. А вот то, что это изобретение фактически оказалось никому не нужным, это уже очень плохо. Но это, к сожалению, суровая правда бытия нашего народа, которым управляют недостаточно компетентные или слишком корыстные существа. Пока жаренный петух не клюнет…

ИЗОБРЕТЕНИЕ

Патент Российской Федерации RU2131636

БЕСТОПЛИВНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ

Многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем рассмотреть, что такое автономный бестопливный генератор Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегата, его схема и как сделать устройство своими руками.

Действие

Трансформатор Тесла функционирует в импульсном режиме. Первая фаза – конденсаторный заряд до напряжения пробоя разрядного элемента. Вторая – генерация высокочастотных колебаний в первичном контуре. Включенный параллельно разрядник замыкает трансформатор (источник питания), исключая его из контура. В противном случае он будет вносить определенные потери. Это, в свою очередь, снизит добротность первичного контура. Как показывает практика, такое влияние существенно уменьшает длину разряда. В связи с этим в построенной грамотно схеме разрядник всегда ставится параллельно источнику.

Генератор Адамса

В отличие от других поделок – это устройство действительно работает, но не совсем так, как его позиционируют всевозможные мошенники – продавцы. Обманывать они начинают уже с самого названия устройства. На самом деле оно называется «Двигатель Адамса» и изначально придумывался изобретателем для эмпирического (опытным путем) подтверждения своих предположений, что с движущейся части системы можно взять больше электричества, чем затрачивается на изготовление постоянных магнитов, входящих в него.

И это реально работает! Двигатель вращается очень эффектно, без подключения к сети, аккумулятору и т.д. Да вот только бестопливным генератором это устройство назвать никак нельзя. С двигателем Адамса проводилось множество исследований, как в лабораториях, так и энтузиастами – любителями. Максимальный КПД, полученный в лабораторных условиях – 15%.

Т.е. если посчитать количество электроэнергии, необходимое для намагничивания постоянных магнитов в устройстве, то только 15% из них может вернуться нам в виде электричества. Не очень разумный аккумулятор, не правда ли?

Но это в лабораторных условиях. В реальности все обстоит еще хуже. При подключении минимальной нагрузки (например лампы накаливания) к «коммерческому образцу» — тот замедляет обороты или вовсе перестает вращаться, т.к. силы тока, вырабатываемого им, явно недостаточно для такой работы.

Ламповая катушка

В модификации VTTC используют электронные лампы. Они играют роль генератора колебаний ВЧ. Как правило, это достаточно мощные лампы типа ГУ-81. Но иногда можно встретить и маломощные конструкции. Одной из особенностей в данном случае является отсутствие необходимости обеспечения высокого напряжения. Чтобы получить относительно небольшие разряды, нужно порядка 300-600 В. Кроме того, VTTC почти не издает шума, который появляется, когда трансформатор Тесла функционирует на искровом промежутке. С развитием электроники появилась возможность значительно упростить и уменьшить размер прибора. Вместо конструкции на лампах стали применять трансформатор Тесла на транзисторах. Обычно используется биполярный элемент соответствующей мощности и тока.

Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно — это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида — это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах

. К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.

Устройство магнитного двигателя

Конечно, аппараты на постоянных магнитах не имеют ничего общего с привычным нам электродвигателем. Если во втором движение происходит

за счёт электротока, то магнитный, как понятно, работает исключительно за счёт постоянной энергии магнитов. Состоит он из трёх основных частей:

  • Сам двигатель;
  • Статор с электромагнитом;
  • Ротор с установленным постоянным магнитом.

На один вал с двигателем устанавливается электромеханический генератор. Статический электромагнит, выполненный в виде кольцевого магнитопровода с вырезанным сегментом или дугой, дополняет эту конструкцию. Сам электромагнит дополнительно оснащён катушкой индуктивности. К катушке подключён электронный коммутатор, за счёт чего подаётся реверсивный ток. Именно он и обеспечивает регулировку всех процессов.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы

заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая — повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй — проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками

. Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе»

. Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее

не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала

устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

Вариант униполярного магнитного двигателя

Власов В.Н.

Вариант униполярного магнитного двигателя.

 

На своём сайте я недавно разместил две интересные статьи примерно на одну тему. Это «Вечный двигатель первого рода», автор Головко Владимир Павлович. И «Роторный униполярный магнитный двигатель», автор Калашников Юрий Яковлевич. И это сделано неспроста.

 

Оба автора примерно с одинаковых позиций показывают, что довольно простым способом можно сконструировать магнитный двигатель, который способен работать практически вечно, настолько долго, насколько долго будет сохраняться намагниченность магнитов. Оба автора предлагают при необходимости вместо постоянных магнитов использовать электромагниты. В этом случае это уже не будет «выглядеть» как вечный двигатель, но при подборе параметров можно добиться, что энергетические расходы на поддержание необходимого магнитного поля в электромагнитах будут меньше работы, совершаемой двигателем.

 

Головко В.П. совершенно правильно формулирует техническое задание, но, к сожалению, до конца дело не доводит, согласившись с тем, что магнитов с требуемыми для его двигателя параметрами не существует и предлагает свой способ намагничивания постоянных магнитов. К сожалению, дальше теории дело не пошло. А жаль.

 

Калашников Ю.Я. предлагает более совершенную конструкцию, которая неплохо показала себя в виде простого макета. Для своего двигателя, у которого магнитные поля роторных магнитов должны быть подобны магнитным полям проводников, по которым протекает электрический ток. На плоскости это концентрические окружности, а объемно это будут концентрические цилиндры. Взаимодействие постоянного магнитного поля статора с цилиндрическим магнитным полем магнитов ротора приводит к тому, что вокруг каждого роторного магнита возникает перепад напряженности магнитного поля с одной точки зрения и перепад эфирного давления с другой. В итоге на каждый роторный магнит действует постоянная сила, направленная именно так, как предлагает в своей статье Головко В.П. Таким образом, Калашников Ю.Я. не только сформулировал техническое задание, но и предложил простое решение.

 

Мои предложения в некотором смысле можно считать усовершенствованием того, что предложил Калашников Ю.Я. Дело в том, что решение Калашникова Ю.Я. хоть и красивое, но для его реализации необходимо составлять своеобразный бутерброд из двух плоских, длинных и особым образом намагниченных магнитов. Такие магниты технически, наверное, проще собрать из нескольких более коротких магнитов, закрепив их в пазах ротора друг над другом.

 

Вторым недостатком можно считать то, что когда такие составные магниты будут расположены на роторе близко друг от друга, то в итоге мы рискуем получить вместо множества цилиндрических магнитных полей несколько иную магнитную конфигурацию, в которой магнитные поля составных роторных магнитов, замкнутся так, что силовые линии этого итогового поля будут располагаться перпендикулярно силовым линиям магнитного поля статора. А такое магнитное поле уже не сможет вращать ротор вокруг оси. Значит надо как-то из кругового магнитного поля соорудить полукруговое магнитное поле, сохранив за ротором способность вращаться в итоговом магнитном поле.

 

Униполярным двигателям и генераторам, как в прошлом, так и в настоящем, уделяется большое внимание. Хотя используются такие моторы и генераторы в специфических условиях. Например, когда надо получить постоянный электрический ток большой величины, но при малом напряжении. Или получить мотор, работающий от мощных аккумуляторов с небольшим напряжением, таких как магнето на автомобилях, тракторах и т.п.

 

Униполярный электродвигатель  - разновидность электрических машин постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1 токосъёмник на оси диска и 2-ой токосъёмник у края диска.

 

Рис. 1. Простой униполярный двигатель.

 

Наглядная демонстрация работы униполярного электродвигателя. На головке шурупа находится постоянный магнит, сила которого удерживает шуруп притянутым к полюсу батарейки.

 

Первый униполярный двигатель, колесо Барлоу, создал Питер Барлоу, описав его в книге «Исследование магнитных притяжений», опубликованной в 1824 году. Колесо Барлоу представляло собой два медных зубчатых колеса, находящихся на одной оси. В результате взаимодействия тока, проходящего через колёса с магнитным полем постоянных магнитов колёса вращаются. Барлоу выяснил, что при перемене контактов или положения магнитных полюсов происходит смена направления вращения колёс на противоположное.

 

Униполярный генератор — разновидность электрической машины постоянного тока. Содержит проводящий диск, постоянное магнитное поле, параллельное оси вращения диска, 1 токосъёмник на оси диска и 2-й токосъёмник у края диска.

 

Рис.2. Диск Фарадея, первый униполярный генератор

 

С позиций электродинамики принцип действия униполярного генератора простой. Есть смысл его привести. На электроны, находящиеся в диске, действует Сила Лоренца, являющаяся векторным произведением напряжённости магнитного поля и скорости перемещения электрона вместе с проводником в результате вращения диска. Сила эта направлена вдоль радиуса диска. В результате при вращении диска возникает ЭДС между его центром и краем.

 

В отличие от других электрических машин, такой генератор имеет чрезвычайно низкую ЭДС (от долей до единиц вольт) при низком внутреннем сопротивлении и большом токе; равномерность получаемого тока, отсутствие необходимости коммутировать его коллектором ротора, или выпрямлять полученный другими машинами переменный ток внешними коммутирующими или электронным приборами; большие собственные потери энергии из-за протекающих по диску обратных токов, его бесполезно нагревающих. Эта проблема частично решается в конструкциях двигателей и генераторов с жидким проводящим токосъёмником по всему периметру диска; Сочетание этих свойств обусловило очень узкие сферы применения этого типа генераторов.

 

Чтобы принцип работы униполярного мотора и генератора был более понятным, воспользуемся рис.3. Данный рисунок составлен из двух рисунков, взятых с одного форума в Интернете.

 

Рис.3. Объяснение работы униполярного мотора и генератора.

 

Рис.4. Еще одна схема для ознакомления с принципами работы униполярного двигателя и генератора.

 

В данных схемах предполагается, что магнит одновременно является как носителем магнитного поля, так и проводником электрического тока. Хотя с таким же успехом функции магнита можно разделить между диском из материала с высокой проводимостью и отдельным магнитом для создания магнитного поля. В этом случае необязательно, чтобы магнитное поле покрывало весь диск, достаточно, чтобы магнитное поле присутствовало пространственно только над тем сектором диска, где будет протекать электрический ток в случае, если мы имеем мотор, или над тем сектором, с которого мы будет этот ток получать в случае, если будем использовать конструкцию в качестве генератора. Это позволяет упрощать конструкцию, обеспечивая над нужными участками вращающего диска магнитное поле нужной напряженности, использую магниты (электромагниты) меньших габаритов при той же напряженности создаваемого магнитного поля.

 

С другой стороны можно эффективно использовать как всю площадь диска (дисков), так и площадь магнита (магнитов). Почему дисков и магнитов? А потому, что диски и магниты можно насадить на одну общую ось по схеме магнит-диск-магнит-диск-…-магнит-диск-магнит. Такую модификацию униполярного двигателя предложил Тесла, при этом он предложил диски разделить на спиральные сектора, а ток снимать фактически со всей окружности дисков. Многих мучает желание понять, зачем Тесла обратил свое внимание на униполярный двигатель и генератор, ибо это как-то, похоже, не связано с его основным изобретением – трансформатором Тесла. Но это только на первый взгляд.

 

Рис.5. Трансформатор Николы Тесла с электромагнитным гасителем искры.

 

На рис.5. показана схема знаменитого трансформатора Николы Тесла. До настоящего времени идут споры о механизмах, которые позволяют создавать ударные эфирные волны и шаровые молнии. В дополнении к тому, что я уже постарался показать в предыдущих статьях о Тесла, хотелось бы отметить, возможно, очень важное. Болотов Б.В., интересный во всех отношения ученый Украины, высказал интересную мысль о возможности использования волн на поверхности водоема, но не от брошенного камня, а от обода, который располагают на поверхности воды, а затем по определенному закону слегка опускается в воду и поднимается из неё, без отрыва обруча от воды. В этом случае при подборе параметров обода, а также частоты принудительных колебаний можно внутри обода создать стоячую волну, которая будет периодически создавать в центре поверхности водного круга всплески, достигающие большой амплитуды. А если повезет, от этой центральной волны периодически будет вверх отрываться определенный объем воды шаровидной или торовидной формы. Наблюдательные люди давно заметили, что нечто похожее возникает на месте падения капли воды на водную поверхность, но этот эффект крайне непродолжительный, так как зона падения капли на поверхность воды не ограничена обручем.

 

А теперь посмотрите с этих позиций на схему трансформатора Николы Тесла. Первичная обмотка А аналогична колеблещемуся на воде обручу, который формирует во вторичной обмотке С стоячую электромагнитную (эфирную) волну с одной стороны, а с другой стороны не дает этой волне покинуть вторичную обмотку. Форма, частота, напряжение и сила тока в первичной обмотке выбирается такой, чтобы её параметры согласовывались с параметрами (индуктивность, способ намотки, материал, емкость), чтобы затраты энергии на создание стоячей волны были минимальные. Поэтому Тесла и говорил в одном своем интервью, что его трансформатор практически не рассеивает энергию, а использует её на 98-99% для создания энергетических объектов – плазмоидов или, иначе, шаровых молний. Вторичная обмотка выполняла не только роль формирователя стоячей волны, но и своеобразного аккумулятора. И когда энергия, образно говоря, начинала переливаться через край, происходил выброс плазмоида на пике напряжения в центре вторичной обмотки путем отрыва шаровой молнии от эфирного всплеска в центре вторичной обмотки.

 

Но какая связь между униполярным динамо и трансформатором Тесла? Дело в том, что по виткам первичной обмотки протекал достаточно большой ток, поэтому Тесла делал её из проводника большого диаметра  с малым омическим сопротивлением. А там, где в селеноиде протекает большой ток, возникает сильное магнитное поле. И пусть это поле было в виде импульса, но напряженность его было высоким. Этот всплеск магнитного поля в первичной обмотке вызывал мощный импульс тока во вторичной обмотке, который волной распространялся по двум спиралям этой бифилярной обмотки, формирую в итоге стоячую волну напряжения (эфирного давления) над ней.

 

Как известно вынужденные колебания в колебательной системе, как правило, происходят с частотой вынужденных колебаний или его гармоник. Примем, что импульс тока в первичной обмотке и всплеск магнитного поля внутри её задавался Тесла в форме положительного прямоугольного импульса. Значит и колебания эфира над вторичной обмоткой задавались основной частотой колебаний в первичной обмотке, но вот форма этих стоячих волн определялась уже параметрами вторичной обмотки, а значит, что на одних частотах колебания усиливались, а на других могли заметно ослабевать. Это в итоге вело к тому, что солитонопорождающие колебания эфира над вторичной обмоткой уже не были похожи на прямоугольные импульсы, а определялись в заметной степени самой вторичной обмоткой. Не зря Тесла так тчательно относился к процессу выбора проводника для вторичной катушки и способу намотки. Кроме того изучающие наследие Тесла обратили внимание, что из математических методов он использовал проктически только преобразования Фурье. Тот, кто знает, что это такое понимает, что любой прямоугольный импульс в первичной обмотке ТТ можно промоделировать в виде суммы гармонических колебаний. Так вот, набор этих колебаний во вторичной обмотке будет представлен тем же набором гармоник, но уже с другими коэффициентами, что вызовет изменение формы стоячей волны во вторичной обмотке. И она вместо прямоуголной формы будет похожа на своеобразный пакет гармонических колебаний, амплитуда которых увеличивается от края к центру вторичной обмотки.

 

Получается, что вторичная обмотка в трансформаторе Тесла работала как оптический лазер, периодически выстреливая шаровые молнии или строго направленные локально ограниченные ударные волны. У лазера тоже ведь есть катушка для энергетической накачки, которая излучает когерентное излучение, энергия которого накапливается в кристалле, например рубине, длину которого подбирают очень строго, чтобы на ней могло уложиться целое число периодов выбранной световой волны, например красного цвета, а затем, когда энергии накапливается в достатке, «болтаясь» в виде стоячей волны вдоль всего кристалла от одного торца к другому, по достижению критического порога энергии стоячей световой волны кристалл выстреливает своеобразный световой солитон (волновой пакет) через один из своих торцов, который специально делают полупрозрачным.

 

Вот поэтому Тесла назвал свою вторичную бифилярную катушку катушкой для электромагнита. Только не «постоянного», а импульсного, в виде первичной катушки его любимого трансформатора.

 

Но вернёмся к униполярному динамо или мотору. Как для униполярного мотора, так и для униполярного генератора важно, чтобы вращался электропроводный диск, который должен обладать небольшим внутренним сопротивлением (золото, серебро, медь). Магнит может не вращаться или он может вращаться как вместе с диском, так и сам по себе, но исключительно параллельно вращающемуся диску.

 

Данное открытие было сделано А. Родиным. Им обнаружено, что реакция на цилиндрическом магните-статоре при вращающемся диске-роторе в униполярном двигателе полностью отсутствует (рис.6). С другой стороны вращение постоянного магнита никак не влияло на вращение диска. Важен лишь факт наличия магнитного поля, его напряженность и направление силовых линий. Проще говоря, наличие струй эфира, «вентилятором» для которых является магнит, у южного полюса он эфир «засасывает», а из северного полюса «выдувает». Так как в области северного полюса магнита создается зона с повышенным эфирным давлением, а возле южного полюса – с пониженным давлением, то «выдуваемый» из северного полюса эфир возвращается к южному полюсу, но уже обтекая магнит снаружи. Так магнитом формируется торовидный эфирный вихрь.

Рис. 6. Схема опыта  А.Родина.

 

В рамках известных представлений явление не имеет корректного объяснения, так как находится в противоречии с законами механики. В действительности к магниту приложены скомпенсированные продольные силы F от вращающегося диска и неподвижного проводника токоподвода, в результате чего суммарный момент на магните равен нулю и он остается в состоянии покоя. Роль статора выполняет неподвижный проводник токоподвода, на который передается реакция от магнита - поперечная сила F, однако непосредственного действия на вращающийся диск-ротор магнитное поле токоподводящего проводника-статора не оказывает. Таким образом, от токоподводящего проводника-статора вращающийся момент передается на магнит, а от магнита, в свою очередь, вращающийся момент передается на диск-ротор, при этом магнит выполняет роль активного передаточного тела, оставаясь все время неподвижным. Суммарный вращающий момент на магните всегда остается равным нулю.

С позиций эфиродинамики механизм вращения диска в униполярном моторе очень простой. Когда ток проходит в диске, находящемся в постоянном магнитном поле, направление силовых линий которого параллельно оси вращения диска, то данный ток создает вокруг себя круговое магнитное поле, направление вращения которого можно определить по правилу правой руки, которое и взаимодействует с постоянным магнитным полем. В результате с одной стороны от этой токовой «дорожки» магнитное поле усиливается, а с другой ослабляется. Или, если исходить из эффекта Магнуса для эфирных потоков, то с одной стороны токовой «дорожки» эфирное давление падает, а с другой возрастает. Разность эфирный давлений воздействует не на сам ток, а на носитель тока, коим является проводящий диск и проворачивает его вокруг оси на некоторый угол. Но токовая «дорожка» пространственно остается там же, на старом месте, поэтому вместе с ней остаются на месте зоны повышенного и пониженного эфирного давления, которые опять проворачивают токопроводящий диск. И так оборот за оборотом. Вот почему важно, чтобы магнитное поле достаточной напряженности располагалось как раз над (под) токовой «дорожкой». В другом месте магнитное поле бесполезно.

 

Объяснить работу униполярного генератора также можно с позиций эфиродинамики. При вращении токопроводящего диска электроны, как наиболее подвижные эфирные вихревые образования создают в диске концентрические токи, вокруг которых создается цилиндрическое магнитное поле. Это цилиндрическое магнитное поле взаимодействует с постоянным магнитным полем внешнего магнита, и в зависимости от направления вращения токопроводящего диска электроны будут либо оттесняться к периферии диска, либо собираться в центре диска. Разность концентраций электронов в центре и на периферии диска будут порождать напряжение. Но тут есть одна тонкость, на которую в известных мне материалах никто не обращает внимание.  Дело в том, что на электроны будет действовать и центробежная сила, которая равноценна разности давлений эфира и напряжению. Поэтому важно, чтобы диск, направление токовой «дорожки» в пространстве и расположение магнитных полюсов внешнего магнита было таким, чтобы электроны оттеснялись на периферию диска как под действием центробежной силы, так и под действием силы Лоренца (эффекта Магнуса), что позволит обеим силам усиливать эффект друг друга.

 

В итоге между центром и периферией диска возникает напряжение, а в случае замыкания электродов на нагрузку через неё протекает электрический ток. И как в случае с униполярным мотором достаточно, чтобы магнитное поле было расположено над (под) линией, соединяющие электроды, с которых снимается напряжение. Это позволит использовать мощные, но небольшие по габаритам магниты (электромагниты).

 

Таким образом, с позиций эфиродинамики легко объясняются особенности работы униполярного двигателя или униполярного генератора. И самое главное, становится понятно, почему вращение магнита при наличии отдельного проводящего диска необязательно. Важно, что все эти эффекты связаны с характером взаимодействия эфирных полей – магнитного поля постоянного магнита и цилиндрических магнитных полей, динамически возникающих или протекающих меду электродами токов во вращающемся диске. В гидродинамике и аэродинамике этот эффект имеет аналога в виде эффекта Магнуса. Например, аналогом униполярного двигателя может служить ветрогенератор с лопастями, выполненных в виде принудительно вращающихся цилиндров. Несколько таких ветрогенераторов установлены в Белоруссии.

 

Пытаясь упростить решение, предлагаемое Калашниковым Ю.Я., я обратил внимание на давно известный вариант постоянного магнита как подковообразный (рис.7)

 

Рис.7. Подковообразный магнит.

 

В таком магните, как он изображен на рисунке, магнитные линии тоже будут слева замыкаться между северным (синий) и южным (красный) магнитными полюсами «по воздуху», но остальные участки магнитных линий (в правой части магнита) будут проходить внутри магнита, и, таким образом, будут защищены от воздействия магнитного поля такого же магнита, когда, например, два или более таких магнитов будут выстроенны в цепочку (рис.8).

 

Рис.8. Цепочка подковообразных магнитов.

 

Если подковообразный магнит расположить между полюсами мощного постоянного магнита как это показано на рисунке рис.9. то в результате враимодействия магнитных полей на подковообразный магнит начнет действовать сила, которая будет стремиться переместить подковообразный магнит вправо.

 

Рис.9. Подковообразный магнит в магнитном поле мощного магнита.

 

Причины, по которым на подковообразной магнит в магнитном поле мощного постоянного магнита будет действовать сила, объясняются точно так же, как это было сделано в статье Калашникова Ю.Я. В самом деле, магнитные силовые линии от северного полюса подковообразного магнита к южному будут описывать если не окружность, то кривую, похожую на эллипс. Направление этих силовых линий будет совпадать с направлением силовых линий «статорного» мощного магнита. В результате слева от подковообразного магнита будет наблюдаться повышение плотности магнитного поля, тогда как справа от подковообразного магнита плотность магнитного поля будет снижаться. Исходя из эфирных представлений можно считать, что слева от подковоорбразного магнита давление эфира будет выше, чем справа. Все это указывает на то, что на подковообразный магнит будет действать горизонтальная сила F, как это указано на рис.9.

 

Теперь, думаю, понятно, почему я указал, что данный способ является некоторым усовершенствованием способа, предложенного Калашниковым Ю.Я. Говоря простым языком, я предлагаю замкнуть, например, правые полюса составного магнита по его схеме обычным магнитопроводом, тем самым защитив эти полюса от воздействия соседних составных роторных магнитов.

 

Остальное уже дело техники. В качестве роторных и статорных магнитов можно будет использовать электромагниты, но для моторов малой мощности в несколько киловатт можно будет использовать магниты. Думаю, что особое внимание придется уделить подковообразному магниту, которому, по идее, можно придать более удобную форму, как в целях упрощения технологии, так и в целях формирования между его полюсами магнитного поля, магнитные линии которого будут максимально приближены к полуокружностям.

 

Но это еще не все. Если два таких подковообразных магнита соединить противоположными полюсами, то магниты образуют кольцо, в котором магнитное поле обоих магнитов соединится в кольцевое (закольцованное) магнитное поле. Такой магнит перестанет притягивать железные предметы, так как за пределы этого магнита не выйдет ни одна силовая линия. Но это не значит, что такой магнит, а точнее его закольцованное магнитное поле, не будет взаимодействовать с другими магнитными полями. А так как магнитное поле такого магнита будет представлять собой вращающееся в одну сторону эфирное кольцо, то такое поле при взаимодействии с внешним магнитным полем постоянного магнита поведет себя также как и магнитное поле проводника с током, а может даже и лучше. Такой магнит, если его правильно расположить во внешнем магнитном поле будет перемещаться как проводник с током.

 

Подтверждением этому может служить опыт В.Черникова. На проводник с током в магнитном поле постоянного магнита действует сила Лоренца (рис.10).  Однако если проводник закрыть цилиндрическим экраном из магнитомягкого материала, то действие на проводник магнитного поля практически исчезает, но зато сила оказывается приложенной теперь к обесточенному экрану.

 

Рис.10. Схема опыта В.Черникова.

 

 

Явление объяснимо только при учете взаимодействия токов проводника и индуцированных эквивалентных токов экрана с полями векторного потенциала во внутренней полости экрана. Этот опыт прекрасно объясняестя с эфиродинамических принципов. В цилиндре под действием магнитного поля проводника с током возникает цилиндрическое закольцованное магнитное поле, цилиндр с таким магнитным полем будет взаимодействовать с учетом эффекта Магнуса так же как и проводник с током. При выбранных на рисунке параметрах цилиндр будет выталкиваться из магнитного поля N-S. В итоге получаем схему униполярного мотора (рис.11).

 

Рис.11. Схема униполярного мотора Власова В.Н.

 

Но раз из двух подковообразных магнитов можно получить «закольцованный магнит» или магнит с закольцованным магнитным полем, то, скорее всего, такие магниты с закольцованным магнитным полем внутри можно сразу готовить из кольцевой заготовки, которые используются, например, для изготовления аксиальных или радиальных магнитов.

 

Тут главное принцип работы и способ создания кругового, закольцованного магнитного поля. Теперь остается подумать как наиболее рационально реализовать этот принцип на практике. И тут могут быть варианты. В первом же случае, который приходит на ум, вдоль ротора располагаем трубки из таких магнитов, эти трубки из магнитов не будут мешать таким же соседним трубкам, так как их магнитное поле надежно спрятано. Чтобы магниты не разрушались, их можно «насаживать» на цилиндр как на шампур из непроводящего электрический ток материала. Что-то похожее на такую конструкцию (рис.12). Единственно, что надо обеспечить, чтобы длина статора над трубками из кольцевых магнитов на роторе была чуток больше длины трубкок. Иначе часть магнитов будет вращаться без толку.

 

Рис. 12. Униполярная машина.

 

В случае использования в качестве таких цилиндров, на которые будут «нанизываться» кольцевые магниты, алюминиевых или медных цилиндров (проводников) будет одновременно создаваться на концах цилиндров ЭДС, которую вроде бы можно будет задаром снимать и направлять в нагрузку. Но анализ порождаемого при этом магнитного поля по правилу правой руки показывает, что магнитное поле порождаемого тока будет закручиваться по часовой стрелке, тогда как магнитное поле в закольцованном магните закручено против часовой стрелки. В итоге у нас не будет ни двигателя, ни генератора. Но ничто не мешает посадить униполярный двигатель и униполярный генератор на одну ось, продумав их конструкции, чтобы иметь источник электрической энергии.

 

По правде говоря, не верится, что все так просто.

 

 

Источники:

  1. Калашников Ю.Я. Роторный униполярный магнитный двигатель [РУМД].
  2. Головко В.П. Вечный двигатель первого рода.
  3. Николаев В.Г. Современная электродинамика и причины её парадоксальности.

 

Безтопливная энергетика

На главную

История создания электродвигателя

Электромеханика является относительно молодой, по историческим меркам, отраслью науки и техники.

1800, Вольта

Итальянский физик, химик и физиолог, Алессандро Вольта, первый в мире создал химический источник тока.

1820, Эрстед

Датский ученый, физик, Ханс Кристиан Эрстед, обнаружил на опыте отклоняющее действие тока на магнитную стрелку.

1821, Фарадей

Первый электродвигатель Фарадея, 1821 г.

Британский физик-экспериментатор и химик, Майкл Фарадей, опубликовал трактат "О некоторых новых электромагнитных движениях и о теории магнетизма", где описал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. Эта конструкция впервые реализовала непрерывное преобразование электрической энергии в механическую. Принято считать ее первым электродвигателем в истории.

1822, Ампер

Французский физик, Андре Мари Ампер, открыл магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту. Среди прочего Ампер предложил использовать железный сердечник, помещенный внутрь соленоида, для усиления магнитного поля. В 1820 году им был открыт закон Ампера.

1822, Барлоу

Английский физик и математик, Питер Барлоу, изобрел колесо Барлоу, по сути, униполярный электродвигатель.

1825, Араго

Французский физик и астроном, Доминик Франсуа Жан Араго, опубликовал опыт показывающий, что вращающийся медный диск заставляет вращаться магнитную стрелку, подвешенную над ним.

1825, Стёрджен

Британский физик, электротехник и изобретатель, Уильям Стёрджен, в 1825 изготовил первый электромагнит, который представлял из себя согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки.

Вращающееся устройство Йедлика, 1827/28 гг.

1827, Йедлик

Венгерский физик и электротехник, Аньош Иштван Йедлик, изобрел первую в мире динамо-машину (генератор постоянного тока), однако практически не объявлял о своем изобретении до конца 1850-х годов.

1831, Фарадей

Английский физик, Майкл Фарадей, открыл электромагнитную индукцию, то есть явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Формулировка закона электромагнитной индукции.

1831, Генри

Американский физик, Джозеф Генри, независимо от Фарадея обнаружил взаимоиндукцию, но Фарадей раньше опубликовал свои результаты.

1832, Пикси

Генератор постоянного тока Пикси

Француз, Ипполит Пикси, сконструировал первый генератор переменного тока. Устройство состояло из двух катушек индуктивности с железным сердечником напротив которых располагался вращающийся магнит подковообразной формы, который приводился в движение вращением рычага. Позже для получения постоянного пульсирующего тока к этому устройству был добавлен коммутатор.

Электродвигатель Стёрджена
Strurgejn's Annals of Electricity, 1836/37, vol. 1

1833, Стёрджен

Британский физик, Уильям Стёрджен, публично продемонстрировал электродвигатель на постоянном токе в Марте 1833 года в Аделаидской галерее практической науки в Лондоне. Данное изобретение считается первым электродвигателем, который можно было использовать.

1833, Ленц

В начале в электромеханике разграничивали магнито-электрические машины (электрические генераторы) и электро-магнитные машины (электрические двигатели). Российский физик (немецкого происхождения), Эмилий Христианович Ленц, опубликовал статью о законе взаимности магнито-электрических явлений, то есть о взаимозаменяемости электрического двигателя и генератора.

Май 1834, Якоби

Первый вращающийся электродвигатель. Якоби, 1834

Немецкий и русский физик, академик Императорской Санкт-Петербургской Академии Наук, Борис Семенович (Мориц Герман фон) Якоби, изобрел первый в мире электродвигатель с непосредственным вращением рабочего вала. Мощность двигателя составляла около 15 Вт, частота вращения ротора 80-120 оборотов в минуту. До этого изобретения существовали только устройства с возвратно-поступательным или качательным движением якоря.

1836 - 1837, Дэвенпорт

Проводя эксперименты с магнитами, американский кузнец и изобретатель, Томас Дэвенпорт, создает свой первый электромотор в июле 1834 года. В декабре этого же года он впервые продемонстрировал свое изобретение. В 1837 году Дэвенпорт получил первый патент (патент США №132) на электрическую машину.

1839, Якоби

Используя электродвигатель питающийся от 69 гальванических элементов Грове и развивающий 1 лошадиную силу, в 1839 г. Якоби построил лодку способную двигаться с 14 пассажирами по Неве против течения. Это было первое практическое применение электродвигателя.

1837 - 1842, Дэвидсон

Шотландский изобретатель, Роберт Дэвидсон, занимался разработкой электродвигателя с 1837 года. Он сделал несколько приводов для токарного станка и моделей транспортного средства. Дэвидсон изобрел первый электрический локомотив.

1856, Сименс

Немецкий инженер, изобретатель, ученый, промышленник, основатель фирмы Siemens, Вернер фон Сименс изобрел электрический генератор с двойным T-образным якорем. Он первый разместил обмотки в пазах.

1861-1864, Максвелл

Британский физик, математик и механик, Джеймс Клерк Максвелл, обобщил знания об электромагнетизме в четырех фундаментальных уравнениях. Вместе с выражением для силы Лоренца уравнения Максвелла образуют полную систему уравнений классической электродинамики.

1871-1873, Грамм

Бельгийский изобретатель, Зеноб Теофил Грамм, устранил недостаток электрических машин с двух-Т-образным якорем Сименса, который заключался в сильных пульсациях вырабатываемого тока и быстром перегреве. Грамм предложил конструкцию генератора с самовозбуждением, который имел кольцевой якорь.

1885, Феррарис

Итальянский физик и инженер, Галилео Феррарис, изобрел первый двухфазный асинхронный электродвигатель. Однако Феррарис думал, что такой двигатель не сможет иметь КПД выше 50%, поэтому он потерял интерес и не продолжал улучшать асинхронный электродвигатель. Считается, что Феррарис первым объяснил явление вращающегося магнитного поля.

1887, Тесла

Американец сербского происхождения, изобретатель, Никола Тесла, работая независимо от Феррариса, изобрел и запатентовал двухфазный асинхронный электродвигатель с явно выраженными полюсами статора (сосредоточенными обмотками). Тесла ошибачно считал что двухфазная система токов оптимальна с экономической точки зрения среди всех многофазных систем.

1889-1891, Доливо-Добровольский

Русский электротехник польского происхождения, Михаил Осипович Доливо-Добровольский, прочитав доклад Феррариса о вращающемся магнитном поле изобрел ротор в виде "беличьей клетки". Дальнейшая работа в этом направлении привела к разработке трехфазной системы переменных токов и трехфазного асинхронного электродвигателя, получившего широкое применение в промышленности и практически не изменившегося до нашего времени.

Широкое внедрение электромеханических устройств в России начинается после Октябрьской революции 1917 г., когда электрификация всей страны стала основой технической политики нового государства. Можно сказать, что XX век стал веком становления и широкого распространения электромеханики.

Выбор между двухфазной и трехфазной системой

Доливо-Добровольский справедливо считал, что увеличение числа фаз в двигателе улучшает распределение намагничивающей силы по окружности статора. Переход к трехфазной системы от двухфазной уже дает большой выигрыш в этом отношении. Дальнейшее увеличение числа фаз нецелесообразно, так как приводит к значительному увеличению расходов металла на провода.

Для Теслы же казалось очевидным, что чем меньше число фаз, тем меньше требуется проводов, и следовательно тем дешевле устройство электропередачи. При этом двухфазная система передачи требовала применения четырех проводов, что представлялось не желательным в сравнении с двух проводными системами постоянного или однофазного переменного токов. Поэтому Тесла предлагал применять трех проводную линию для двухфазной системы, делая один провод общим. Но это не сильно уменьшало количество затрачиваемого на систему металла, так как общий провод должен был быть большего сечения.

Таким образом трехфазная система токов предложенная Доливо-Добровольским была оптимальной для передачи энергии. Она практически сразу нашла широкое применение в промышленности и до наших дней является основной системой передачи электрической энергии во всем мире.

Магнитный двигатель своими руками

В чем преимущества и минусы работающих двигателей на магнитной энергии.

Практически все происходящее в нашем быту целиком зависит от электроэнергии, однако существуют некоторые технологии, позволяющие совсем избавиться от проводной энергии. Давайте вместе рассмотрим, можно ли изготовить магнитный двигатель своими руками, в чем состоит принцип его работы, как он устроен.

Принцип работы магнитного двигателя

Сейчас существует понятие, что вечные двигатели могут быть первого и второго вида. К первому относятся устройства, производящие самостоятельно энергию – как бы из воздуха, а вот второй вариант – двигатели, получающие эту энергию извне, в ее качестве выступает вода, солнечные лучи, ветер, а затем устройство преобразовывает полученную энергию в электричество. Если рассматривать законы термодинамики, то каждая из этих теорий практически неосуществима, однако с подобным утверждением совершенно не согласны некоторые ученые. Именно они начали разрабатывать вечные двигатели, относящиеся ко второму типу, работающие на получаемой от магнитного поля энергии.

Разрабатывали подобный «вечный двигатель» множество ученых, причем во разное время. Если рассматривать конкретнее, то наибольший вклад в такое дело, как развитие теории создания магнитного двигателя совершили Василий Шкондин, Николай Лазарев, Никола Тесла. Помимо них хорошо известны разработки Перендева, Минато, Говарда Джонсона, Лоренца.

Все они доказывали, что силы, заключенные в постоянных магнитах, имеют огромную, постоянно возобновляемую энергию, которая пополняется из мирового эфира. Тем не менее, суть работы постоянных магнитов, а также их действительно аномальную энергетику никто на планете до сих пор не изучил. Именно поэтому так никто не смог пока достаточно эффективно применить магнитное поле для того, чтобы получить действительно полезную энергию.

Сейчас еще никто не смог создать полноценного магнитного двигателя, однако существует достаточное количество весьма правдоподобных устройств, мифов и теорий, даже вполне обоснованных научных работ, которые посвящены разработке магнитного двигателя. Всем известно, что для сдвига притянутых постоянных магнитов требуется значительно меньше усилий, нежели для того, чтобы их оторвать один от другого. Именно это явление чаще всего используется, чтобы создать настоящий «вечный» линейный двигатель на основе магнитной энергии.

Каким должен быть настоящий магнитный двигатель

В общем, выглядит подобное устройство следующим образом.

  1. Катушка индуктивности.
  2. Магнит подвижный.
  3. Пазы катушек.
  4. Центральная ось;
  5. Шарикоподшипник;
  6. Стойки.
  7. Диски;
  8. Постоянные магниты;
  9. Закрывающие магниты диски;
  10. Шкив;
  11. Приводной ремень.
  12. Магнитный двигатель.

Любое устройство, которое изготовлено на подобном принципе, вполне успешно может быть использовано для выработки по-настоящему аномальной электрической и механической энергии. Причем, если применять его как генераторный электрический узел – то он способен вырабатывать электроэнергию такой мощности, которая существенно превышает аналогичное изделие, в виде механического приводного двигателя.

Теперь разберем подробнее, что вообще представляет из себя магнитный двигатель, а также почему множество людей пытаются разработать и воплотить в реальность эту конструкцию, видя именно в ней заманчивое будущее. Действительно настоящий двигатель этой конструкции должен функционировать исключительно только на магнитах, при этом используя непосредственно для перемещения всех внутренних механизмов их постоянно выделяемую энергию.

Важно: основной проблемой разнообразных конструкций основанных именно на использовании постоянных магнитов, становится то, что они склонны стремиться к статическому положению, именуемому равновесием.

Когда рядом привинтить два достаточно сильных магнита, то они двигаться будут только до момента, когда будет достигнуто на минимально возможной удаленности максимальное притяжение между полюсами. В реальности они просто друг к другу повернутся. Поэтому каждый изобретатель разнообразных магнитных двигателей пытается сделать переменным притяжение магнитов за счет механических свойств самого двигателя или использует функцию своеобразного экранирования.

При этом магнитные двигатели в чистом виде очень неплохи по своей сущности. А если добавить к ним реле и управляющий контур, использовать гравитацию земли и дисбаланс, то они становятся действительно идеальными. Их смело можно именовать «вечными» источниками поставляемой бесплатной энергии! Есть сотни примеров всевозможных магнитных двигателей, начиная от наиболее примитивных, которые можно собрать собственноручно и заканчивая японскими серийными экземплярами.

В чем преимущества и минусы работающих двигателей на магнитной энергии

Преимуществами магнитных двигателей является их полная автономия, стопроцентная экономия топлива, уникальная возможность из средств, находящихся под руками, организовать в любом требуемом месте установку. Также явным плюсом выглядит то, что мощный прибор, изготовленный на магнитах может обеспечивать жилое помещение энергией, а также такой фактор, как возможность гравитационному мотору работать до тех пор, пока он не износится. При этом даже перед физической кончиной он способен выдавать максимум энергии.

Однако у него имеются и определенные недостатки:

  • доказано, что магнитное поле весьма негативно воздействует на здоровье, особенно этим отличается реактивный движок;
  • хотя имеются положительные результаты экспериментов, большинство моделей совсем не функционируют в естественных условиях;
  • приобретение готового устройства еще не гарантирует, что оно будет успешно подключено;
  • когда появится желание купить магнитный поршневой или импульсный двигатель, стоит быть настроенным на то, что он будет иметь слишком завышенную стоимость.

 

Как самостоятельно собрать подобный двигатель

Подобные самоделки пользуются неизменным спросом, о чем свидетельствуют практически все форумы электриков. Из-за этого следует подробнее рассмотреть, каким же образом можно самостоятельно собрать дома работающий магнитный двигатель.

То приспособление, которое сейчас мы вместе попробуем сконструировать, будет состоять из соединенных трех валов, причем они должны скрепляться так, чтобы центральный вал был прямо повернут к боковым. По центру среднего вала необходимо прикрепить диск, изготовленный из люцита и имеющий диаметр около десяти сантиметров, а его толщина составляет немногим больше одного сантиметра. Наружные валы также должны оснащаться дисками, но уже вдвое меньшего диаметра. На этих дисках закрепляются небольшие магниты. Из них восемь штук крепят на диск большего диаметра, а на маленькие — по четыре.

При этом ось, где расположены отдельные магниты, должна располагаться параллельно плоскости валов. Их устанавливают так, чтобы концы магнитов проходили с минутным проблеском возле колес. Когда эти колеса приводятся руками в движение, то полюсы магнитной оси станут синхронизироваться. Чтобы получить ускорение настоятельно рекомендуется в основании системы установить брусок из алюминия так, чтобы конец его немного соприкасался с магнитными деталями. Выполнив подобные манипуляции, можно будет получить конструкцию, которая будет вращаться, выполняя полный оборот за две секунды.

При этом приводы необходимо устанавливать определенным образом, когда все валы будут вращать относительно других аналогично. Естественно, когда выполнить на систему сторонним предметом тормозящее воздействие, то она прекратит вращение. Именно такой вечный двигатель на магнитной основе впервые изобрел Бауман, однако у него не получилось запатентовать изобретение, поскольку в то время устройство относилось к той категории разработок, на которые патент не выдавался.

Этот магнитный двигатель интересен тем, что совершенно не нуждается во внешних энергетических затратах. Только магнитное поле вызывает вращение механизма. Из-за этого стоит попробовать самостоятельно соорудить вариант подобного устройства.

Для выполнения эксперимента потребуется заготовить:

  • диск, изготовленный из оргстекла;
  • двухсторонний скотч;
  • заготовку, выточенную из шпинделя, а затем закрепленную на стальном корпусе;
  • магниты.

Важно: последние элементы необходимо слегка подточить с одной из сторон под углом, тогда можно будет получить более наглядный эффект.

На заготовку из оргстекла в виде диска по всему периметру требуется наклеить с помощью двухстороннего скотча кусочки магнита. Располагать их необходимо наружу сточенными краями. При этом следует обязательно проследить, чтобы все сточенные края каждого магнита обязательно имели одностороннее направление.

В результате полученный диск, на котором расположены магниты, необходимо закрепить на шпинделе, а затем проверить, насколько свободно он будет вращаться, чтобы не допустить ни малейшего цепляния. Когда к выполненной конструкции поднести маленький магнит, аналогичный тем, которые уже наклеены на оргстекло, то ничего не должно измениться. Хотя если попробовать сам диск немного покрутить, то станет заметен небольшой эффект, хотя и весьма незначительный.

Теперь следует поднести больший размерами магнит и понаблюдать, как изменится ситуация. При подкручивании рукой диска механизм останавливается все равно в промежутке, имеющемся между магнитами.

Когда взять только половинку магнита, который поднести к изготовленному механизму, зрительно видно, что после легкого подкручивания он немного продолжает движение из-за воздействия слабого магнитного поля. Осталось проверить, каким будет наблюдаться вращение, если поочередно убирать магнитики с диска, делая между ними большие промежутки. И этот эксперимент обречен на фиаско — диск неизменно будет останавливаться точно в магнитных промежутках.

Проведя длительные исследования, каждый сможет воочию убедиться, что подобным образом не получится изготовить магнитный двигатель. Следует поэкспериментировать с иными вариантами.

Заключение

Магнитомеханическое явление, заключающееся в необходимости применять действительно незначительные усилия, чтобы сдвигать магниты, если сравнивать с попыткой их отрыва, использовано повсеместно для создания, так называемого, «вечного» линейного магнитного мотора-генератора.

Многие верят, что очень скоро наступит время, когда мощную энергию человечество сможет получать без использования газа и нефтепродуктов. На самом деле гигаватты электроэнергии, которая будет совершенно бесплатной, можно получать, если руководствоваться только магнетизмом, законами электростатики, силы тяготения и постулатами Архимеда. опубликовано econet.ru 

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

Двигатель электромобиля - принцип работы, устройство, виды

По планам многих автоконцернов – именно за тяговым двигателем для электромобиля – будущее. Так известно, что в плане развития известного гиганта Bentley Motors значится, что к 2030-му году компания полностью трансформируется в производителя электроавтомобилей. На электродвигатели ставки также делают такие известные на весь мир компании, как Nissan, Volvo, Aston Martin. 

Тенденции таковы, что в массовом производстве сейчас больше представлены легковые электромобили и городской электротранспорт (согласно планам, в ряде таких стран как, к примеру, Франция и Норвегия в 2025-2030-м гг. автобусы в городах будут полностью заменены на электротранспорт).

Но чувствуется интерес и к установке электромоторов на грузовой транспорт. Особенно электродвигатели интересны производителям городских развозных фургонов, терминальных тягачей и коммунальных грузовиков.

На весь мир уже хорошо известен седельный тягач капотного типа Tesla Semi, в коммунальном хозяйстве США активно не первый год используют мусоровозы PETERBILT на электротяге, в Евросоюзе возрастает интерес к седельному тягачу с электродвигателем Emoss Mobile Systems B.V. и Renault Trucks –развозному автомобилю для продуктов.

На постсоветском пространстве свой коммерческий электротранспорт пока только начинает появляться, но уже активно говорят про грузовик МАЗ-4381Е0 (на грузовике установлен асинхронный тяговый электродвигатель мощностью 70 кВт (95 л.с.), ориентированный на транспортировку грузов в черте города, и электрогрузовик Moskva опытно-конструкторского бюро Drive Electro (главное назначение - доставка товаров в магазины). Не за горами время, когда этот коммерческий транспорт с электромоторами будет активно востребован автопарками, логистическими центрами, предприятиями.

Также, безусловно, давно, как данность мы принимаем, что на электродвигателе работают трамваи, троллейбусы, погрузчики на складах и локомотивы. Трёхфазный асинхронный двигатель помогает двигаться на давно полюбившихся поездах «Ласточка» и «Сапсан».

Принцип работы

Принцип работы двигателя электромобиля основан на преобразовании электроэнергии в механическую энергию вращения. Главные участники преобразования энергии – статор и ротор.

Как работает традиционный электромотор?

  1. Магнитное поле статора действует на обмотку ротора.
  2. Возникает вращающий момент.
  3. Ротор начинает двигаться.

Наглядная схема двигателя электромобиля в системе электропривода представлена ниже:

Важная особенность классического электрокара – отсутствие дифференциала, коробки передач, передаточных устройств с шестеренками. Энергия от электромотора поступает прямо на колеса.

Без коробки передач – и большинство «гибридов» с электродвигателем и ДВС. Исключение – «гибриды» с параллельной схемой передачи на колёса крутящего момента. К ней мы ещё вернёмся в этой статье в разделе, посвящённом гибридным автомобилям.

Принцип работы любого электродвигателя базируется на процессах взаимного притяжения и отталкивания полюсов магнитов на роторе и статоре. Движение осуществляется под действием самого магнитного поля и инерции.


Устройство

Как устроен двигатель электромобиля?

При описании принципа работы электродвигателя, уже было упомянуто, что главные компоненты двигателя электромобиля– ротор и статор.

  1. Ротор – это вращающийся компонент двигателя.
  2. Статор находится в неподвижном состоянии. Он ответственен за создание неподвижного магнитного поля.

Ротор

Классический ротор автомобиля состоит из сердечника, обмотки и вала. У некоторых электродвигателей в состав ротора также входит коллектор.
  • Сердечник – это металлический стержень, на периферии которого располагается обмотка. Непосредственно через сердечник происходит замыкание магнитной цепи электродвигателя. Сердечник изготавливается из стальных пластин круглой формы. По структуре похож на слоёный пирог. При производстве сердечников используют изолированные листы стали с присадками кремния. В этом случае обеспечены увеличение КПД электродвигателя, наименьшие удельные потери в металле на единицу массы, снижение величины размагничивающих вихревых токов Фуко, которые возникают из-за перемагничивания сердечника. На поверхности сердечника есть продольные пазы. Через них прокладывается обмотка.
  • Вал – металлический стержень, который непосредственно передаёт вращающий момент. Также изготавливается из электротехнической стали. Служит основой для насаживания сердечника. На концах вала есть резьба, выемки под шестерёнки, подшипники качения, шкивы.
  • Коллектор – блок, крепящийся на валу. Представляет собой систему медных пластин. Изолирован от вала. Служит выпрямителем переменного тока, переключателем-автоматом направления тока (в зависимости от вида электродвигателя).

Статор (индуктор)

Статор состоит из станины, сердечника и обмотки:
  • Станина статора – корпус статора. Как правило, корпус бывает алюминиевым или чугунным. Алюминиевые станины популярны у электродвигателей легковых авто, чугунные – у спецтехники, которая вынуждена работать в условиях высокой вибрации. Станина служит базой крепления основных и добавочных полюсов.
  • Сердечник статора – цилиндр из профилированных стальных листов. Фиксируется винтами внутри станины. Снабжён пазами для обмотки.
  • Обмотка. Создаёт магнитный поток. При пересечении проводников ротора наводит в них электродвижущую силу.

Виды

Электродвигатели классифицируют по типу питания привода, конструкции щеточно-коллекторного узла, количеству фаз для запитывания:
  • По типу питания привода. Устройства делятся на моторы переменного и постоянного тока. Двигатели постоянного тока способны обеспечить более точную и плавную регулировку оборотов, высокий КПД. Двигатели переменного тока выручают, когда важна высокая перегрузочная способность. Это удачный вариант для подъёмно-транспортных машин. Впрочем, существуют и универсальные моторы, которые функционируют от переменного и постоянного тока.
  • По конструкции щеточно-коллекторного узла. Выпускаются бесколлекторные и коллекторные моторы. Бесколлекторный мотор работает за счёт движения ротора с постоянным магнитом. У конструкции нет щеточно-коллекторного узла. Решение обеспечивает достойный крутящий момент, широкий диапазон скоростей и высокий КПД. Важные преимущества бесколлекторного мотора – надёжность, способность к самосинхронизации, возможность подпитываться при переменном напряжении. Ресурс бесколлекторного мотора ограничен исключительно ресурсом подшипников. У коллекторных моторов присутствует щелочно-коллекторный узел. Удобство решения связано с тем, что он может использоваться и в качестве переключателя тока в обмотках, и как извещатель положения ротора, нет необходимости в контролле. Проблема коллекторных моделей – в том, что они зависимы от постоянных магнитов, которые, как известно, со временем, к огромному сожалению, теряют свои свойства.
  • По количеству фаз для запитывания. В зависимости от того, как запитывается обмотка, электродвигатели бывают однофазными и трёхфазными. В автомобилестроении широкое распространение получили трёхфазные решения, это связано с рядом технических характеристик (мощность, перегрузочная способность, частота вращения на холостом ходу).
Обратите внимание! Работать трёхфазные моторы могут синхронно и асинхронно, а в качестве ротора используются как короткозамкнутые, так и фазные модели. Самый популярный вариант – трехфазные асинхронные моторы с короткозамкнутым ротором. Они стоят на большинстве современных электрокаров.

Асинхронные и синхронные двигатели

Синхронные моторы – двигатели переменного тока, у которых частота вращения ротора идентична частоте вращения магнитного поля (измерение производится в воздушном зазоре). В автомобилестроении синхронные моторы встретить можно нечасто (хотя в мире техники – это, в целом, очень популярное решение – особенно в климатотехнике, насосных системах).

Но есть производители авто, которые при производстве электрокаров предпочитают устанавливать на свои машины именно синхронные двигатели. Яркий пример – концерн Renault. Синхронными двигателями на электромагнитах он оснастил электрокар Renault Zoe. На электромагниты подаётся постоянный ток. Полярность магнитов ротора стабильна. Полярность магнитов статора при этом изменяется и обеспечивает бесперебойное вращение.

Преимущество синхронных двигателей на электромагнитах у авто – максимальная оптимизация рекуперации энергии торможения. И главный «конёк» авто с таким типом электродвигателя – полная безопасность при буксировке.

Гораздо более популярный вариант – асинхронные двигатели. Это двигатели переменного тока, у которых потенциал напряжения – магнитного поля не совпадает с частотой вращения ротора. Типичным 3-фазным асинхронным двигателем оснащены, например, хорошо известные автомобили Tesla S и Tesla Х.

Иногда асинхронные моторы называют индукционными, так как в роторе в соответствие с законом Ленца у них индуцируется электромагнитная сила.

Двигатель-колесо

Обособленно среди электромоторов стоит двигатель-колесо. Особенность двигателя- колеса – ориентир крутящего момента и силы напряжения на конкретное колесо.

Такие решения можно встретить в плагин-гибридных автомобилях («гибридах» с параллельной схемой, при описании устройства гибридных авто ниже по тексту мы остановимся на них подробнее). Работает двигатель-колесо в паре с ДВС.

У первых плагин-гибридных автомобилей с двигателем-колесом агрегат был монтирован в ступицу колеса, а работа осуществлялась исключительно в паре с внутренним зубчатым редуктором.

Некоторые же современные модели моторов, монтируемые внутри колёс, вполне могут работать без зубчатого редуктора. Это увеличивает управляемость, позволяет избежать увеличения удельного веса шасси, уменьшить риски, повышает КПД.

Преимущества и недостатки электродвигателей

Преимуществ у электродвигателей существенно больше, нежели недостатков. Более того, за счёт усовершенствования и конструктивных особенностей самих электроприводов, и инфраструктуры, связанной с зарядкой, многие вещи, которые вчера ещё казались критичными, сегодня теряют свою актуальность.

Преимущества

  • Не требуется «раскачка». Крутящий момент достигает максимума непосредственно при включении. Именно по этой причине электрический двигатель электромобиля не требует наличия стартеров и сцеплений – неотъемлемых спутников ДВС.
  • Удобство. Для включения заднего хода (то есть коррекции со стороны вращения мотора) достаточно поменять полярность, сложная коробка передач не требуется.
  • Высокий КПД. У машин с электродвигателями он достигает 95 %.
  • Независимость. На любой отметке скорости достигается максимальный показатель крутящего момента.
  • У мотора – малый вес. Производители могут себе легко позволить создавать компактные автомобили.
  • Есть все возможности для рекуперации энергии торможения. Если у авто с ДВС кинетическая энергия просто уходит в колодки (и стирает их), то у электромобиля в режиме рекуперации мотор может функционировать как генератор. В режиме генерации электроэнергия просто трансформируется в другую форму и быстро накапливается в АКБ. Особенно решение эффективно для транспортных средств с длинным тормозным путем. На объём генерируемой и накопленной энергии существенно влияет маршрут (рельеф, в частности наличие холмистых участков на дороге и уклон дороги).
  • Снижение расходов на эксплуатацию машины. Зарядку можно производить от электросети. Это существенно дешевле, нежели использование дизеля, бензина. Выгода очевидна даже по сравнению с бензиновыми авто эконом-класса.
  • Малый уровень шума.
  • В большинстве случаев для мотора не требуется принудительное охлаждение.
  • Экологичность. Использование транспорта с электродвигателем снижает количество выхлопных газов в воздухе.

Недостатки

Долгое время считалось, что самый большой минус использования электродвигателя – его зависимость от аккумуляторов, которые быстро выходят из строя. Теперь это неактуально. Современные батареи электрокаров, представленных в массовом выпуске, гарантируют пробег автомобиля 150-200 тыс. км. Потерял актуальность и тот фактор, что машины с электродвигателем существенно уступают бензиновым по мощности. Электротяга современных электромоторов уже не уступает ДВС.

Поэтому недостатки электродвигателей сейчас правильно свести не к недостаткам конструкции, а к плохо развитой инфраструктуре для того, чтобы подзаряжать электромобили. Если в США, Скандинавии подзарядить электрокар легко, то до недавнего момента даже в Западной и Центральной Европе с инфраструктурой для подзарядки таких машин были проблемы.

В России, Беларуси, Украине, Казахстане, пока, увы, с инфраструктурой ситуация ещё хуже. Хотя, например, в России число заправок для электрокаров с 2018 по 2020 год возросло в 3 раза, но полотно покрытия площадками для зарядки очень неоднородное. В Москве – более плотное, в регионах – слабое. Даже разрыв с такими городами-гигантами как Санкт-Петербург и Челябинск - колоссальный.

Устройство электромобиля

Рассматривая электродвигатель, важно остановиться на устройстве электромобиля в целом, изучение электродвигателя не самого по себе, а как части системы электропривода, где электродвигатель – один из его базовых компонентов, его «сердце». Но «организм», функционирует только тогда, когда в порядке все другие «органы» – части электропривода:
  • Аккумуляторная батарея.
  • Бортовое зарядное устройство. Его функция – обеспечение возможности заряжать аккумуляторную батарею от бытовой электрической сети.
  • Трансмиссия. Распространены трансмиссия с одноступенчатым зубчатым редуктором (чаще всего встречающийся и наиболее простой вариант) и бесступенчатая трансмиссия с гидротрансформатором (для старта с места), плавно изменяющие отношение скоростей вращения и вращающих моментов мотора и ведущих колес транспортного средства во всём рабочем диапазоне скоростей и тяговых усилий.
  • Инвертор. Назначение инвертора – трансформирование высокого напряжения постоянного тока аккумулятора в трехфазное напряжение переменного тока.
  • Преобразователь постоянного тока. Функция – зарядка дополнительной батареи, которая используется для системы освещения, кондиционирования, аудиосистемы.
  • Электронная система управления (блок управления). Отвечает за управление функциями, связанными с энергосбережением, безопасностью комфортом. В её «подчинении» – оценка заряда АКБ, оптимизация режимов движения, регулирование тяги, контроль за использованной энергией и за напряжением, управлением ускорением и рекуперативным торможением.

Аккумуляторная батарея

Аккумуляторная батарея (аккумулятор) – один из наиболее дорогих компонентов системы. По своей значимости играет такую же роль, как бензобак для ДВС. Электромобиль движется за счёт электричества, полученного от электросети во время зарядки и хранящегося в АКБ.

При этом важно помнить, что у большинства электромобилей устанавливаются одновременно два аккумулятора: один тяговой – он питает именно мотор и стартерный (как и в машинах с ДВС, он помогает системе освещения, системе подогрева). Эти аккумуляторы разные не только по назначению, но и техническим характеристикам.
Тяговый аккумулятор электрического двигателя электромобиля предназначен для питания мотора, запуска двигателя. У него нет высокого пускового тока, но он заточен на длительную работу, выдерживает большое количество циклов заряда-разряда.

Типичная тяговая АКБ – моноблочная секционная конструкция. Тяговая АКБ состоит из толстых электронных пластин – пористых сепараторов и электролитного вещества.
Самые распространенные аккумуляторы – литий-ионные. У них – наиболее высокая энергетическая плотность, не требуется обслуживание, достаточно низкий саморазряд.

Устройство и особенности гибридных систем


Свои особенности – у гибридных систем. В гибридных системах электродвигатель может рассматриваться и как «партнёр» ДВС, и как допэлемент, помогающий добиться экономии топлива и при этом повышения мощности.

Устройство «гибрида» отличается в зависимости от реализованной схемы передачи на колёса крутящего момента.

  • Параллельная. Аккумуляторы передают энергию электромотору, бак – топливо для ДВС. Оба агрегата равноправны и способны создать условия для перемещения авто. Но работает такая схема только при наличии коробки передач. Параллельная схема успешно реализована у автомобиля Honda Civic. Нередко гибриды с параллельной схемой выделяют в отдельную группу и называют плагин-гибридными.

  • Последовательная. Любое действие начинается с включения ДВС. Он же отвечает за последующие действия: поворот генератора для запуска электромотора, зарядку аккумуляторов.


  • Последовательно-параллельная. Через планетарный редуктор соединены ДВС, электродвигатель и генератор. В зависимости от условий движения может использоваться тяга электродвигателя или ДВС. Режим выбирается программно системой управления транспортного средства. Среди хорошо известных последовательно-параллельных «гибридов» – Toyota Prius, Lexus-RX 400h.

Классический гибридный автомобиль использует интегрированный в трансмиссию электрический мотор-генератор.

При этом для получения электрической тяги у гибридных систем задействованы четыре базовых компонента:

  • Мотор-генератор. Является обратимой силовой установкой. Может работать в двух режимах: непосредственно тягового мотора и генератора для зарядки высоковольтной аккумуляторной батареи. При работе в режиме мотора возможно создание крутящего момента и мощности, которых хватит для старта и движения автомобиля с выключенным ДВС, при работе устройства в режиме генератора продуцируется высоковольтная электроэнергия.
  • Высоковольтные силовые кабели. Изолированные электрические кабели большого сечения. Важны для переноса энергии между компонентами высоковольтных электроцепей.
  • Высоковольтные аккумуляторные батареи. Включенные в последовательную цепь аккумуляторные элементы. Позволяют накопить в батарее большой объём электроэнергии.
  • Высоковольтный силовой модуль управления для управления потоком электроэнергии для движения транспортного средства на электрической тяге.

Гибридные авто открывают новые эксплуатационные возможности, с одной стороны можно быть максимально экологичным, радоваться комфортной езде и сэкономить на топливе, а с другой стороны, при разряде аккумулятора владелец авто не попадёт впросак, если невозможно подзарядить мотор: в работу вступит ДВС.

Перспективы применения электродвигателей в автомобилях

Перспективы применения электродвигателей в автомобилях напрямую связаны с тем, насколько активно будет развиваться инфраструктура. Там, где она не обеспечена, использование электрокаров действительно ограничено. Ведь без подзарядки у многих авто – малая дальность пробега.

Впрочем, даже последняя проблема активно решаемая. Немецкие и японские разработчики (компании DBM Energy, Lekker Energie, Japan Electric Vehicle Club) сумели доказать миру: потенциал у электродвигателей, аккумуляторов без подзарядки может достигать 500 -1000 тысяч километров пробега. Правда, пока что 1 000 тысяч км пробега без подзарядки возможны только в теории, а 500-600 уже на практике.

На данный момент доступность такого транспорта – на уровне инженерно-конструкторской работы, экспериментальных выпусков, но есть перспективы что их подхватят автогиганты, и не за горизонтом – серийное производство.

Перспективы применения электродвигателей в автомобилях очень тесно связаны и с политикой отдельных государств. Например, в Норвегии обладатели электромобилей освобождены от уплаты ежегодного налога на транспорт, пользования платными дорогами, паромными переправами и даже большинством парковок. С учётом того, что налоги и тарифы в Скандинавии одни из самых высоких, мотивация приобрести именно авто с электродвигателем, а не ДВС – очень высокая.

Обратите внимание, что на базе LCMS ELECTUDE есть специальный раздел “Электрический привод”, в нём подробно разбираются электродвигатели, виды электропривода, системы зарядки, особенности обслуживания транспорта с электромотором. Кроме комплексных теоретических знаний в обучающих модулях приводятся многочисленные практические примеры.

Дизайнер

Tesla объясняет причины перехода на постоянные магниты в Tesla Model 3 • ЭЛЕКТРОМОБИЛИ - www.elektrowoz.pl

Tesla Model 3 использует электродвигатель с постоянными магнитами для привода колес. Модель S и модель X, с другой стороны, используют асинхронные двигатели с электромагнитами. Было высказано предположение, что технология Model 3 была изменена на , чтобы снизить стоимость производства двигателя и повысить его эффективность. Сегодня по этому поводу выступил инженер из Tesla Константинос Ласкарис.

Как вспоминал Ласкарис, постоянные магниты имеют преимущество перед электромагнитами на стадии возбуждения — потому что магнитное поле постоянно. Они использовались в модели 3, потому что это было наиболее экономичное решение. Выбор технологии определялся взвешиванием стоимости двигателя, запаса хода и стоимости батареи.

> Hyundai Kona Electric: характеристики, модельный ряд, версии. Когда в Польше? "Май-июнь 2018"

Точная конструкция двигателя Tesla 3 пока неизвестна.Основываясь на маркировке из видео Electrek.co ниже, он предполагает, что это новый тип двигателя PMSRM. Такие двигатели имеют меньший крутящий момент, чем асинхронные двигатели, и могут быть более громкими, чем асинхронные двигатели, из-за асимметрии магнитного поля.

Можно ли установить двигатель Tesla Model 3 на Model S или Model X? Предполагается, что в будущем его можно будет использовать в качестве привода переднего моста из-за его более высокой эффективности (меньшего энергопотребления).Асинхронные двигатели, с другой стороны, наверняка останутся там, где требуется более высокая производительность, даже при большом числе оборотов.

На фото: масляный фильтр силового агрегата Tesla Model 3 (слева) и масляный насос (справа) (c) Ingineerix

> Зарядные станции для электромобилей в Польше – хорошие или слишком слабые темпы?

Если хотите электростанцию ​​БЕЗ РЕКЛАМЫ, поддержите нас на Патроните. Если нет, это может вас заинтересовать:

Читательский рейтинг

[Всего: 38 голосов Среднее: 4.5].

Лучше ездить, чем Tesla [EUREKA DGP]

Хотя электроприводы известны уже более ста лет, они все еще нуждаются в совершенствовании – особенно с учетом потребностей автомобилестроения.Именно с ее учетом инженеры из Щецина разработали специальный электродвигатель.

Слева: д-р инж.Петр Паплицкий, проф. доктор хаб. Рышард Палка и др. инж. Марцин Вардах / Дзенник Газета Правна Несмотря на то, что автомобильная промышленность предлагает все больше и больше моделей электромобилей, к таким транспортным средствам до сих пор относятся как к технической новинке.Неправильно, ведь электропривод составлял конкуренцию двигателю внутреннего сгорания еще на заре автомобилестроения. Уже в конце 19 века покупатели могли приобрести безлошадные повозки, оснащенные электродвигателем или предками сегодняшних бензиновых автомобилей. Барьер в 100 км/ч впервые преодолел в 1899 году электромобиль — бельгийский La Jamais Contente (Ненасытный). Электрические такси курсировали по Лондону и Нью-Йорку одновременно. И тогда, и сегодня основной проблемой «электриков» были аккумуляторы, а именно их недостаточная емкость, а также дороговизна производства.Поскольку на горизонте нет технологий, которые позволили бы конструировать легкие, емкие и дешевые аккумуляторы, любая экономия в потреблении электроэнергии автомобилем на вес золота. - Неправда, что электрические машины - скучная область техники, потому что моторы почти не изменились за сто с лишним лет. Принцип работы верный, но материалы, из которых изготавливаются устройства, постоянно меняются. Меняется автоматика и электроника, управляющая ими. И есть также проблемы, связанные с миниатюризацией, - говорит проф.Рышард Палка из Западно-Поморского технологического университета в Щецине. Изобретение щецинских инженеров можно назвать попыткой борьбы с природой, поскольку оно решает одну из проблем, преследующих электродвигатели с постоянными магнитами, которая является следствием законов физики, обсуждаемых в средней школе.Однако для того, чтобы понять, что это такое, нам придется вернуться гораздо раньше — в детство, в котором наверняка все играли с магнитами.

Именно тогда мы с удивлением обнаружили, что в зависимости от того, каким концом мы приблизим один магнит к другому, они либо вдруг слипнутся, либо между ними образуется невидимая преграда, не позволяющая им соединиться.Этот принцип — противоположные полюса притягиваются друг к другу, одинаковые отталкиваются — лежит в основе работы электродвигателя. Если правильно сформировать и расположить магниты по отношению друг к другу, а также дать одному из них возможность вращаться, то толкание одного и того же и притяжение противоположных полюсов будут действовать как толчки, заставляя движущийся магнит вращаться. Теперь все, что вам нужно сделать, это соединить вращающийся металл, например, с пропеллером и — вуаля! - у нас есть офисный ветряк.

К сожалению, на данный момент те же основные законы физики, которые мы использовали при создании двигателя, начинают работать против нас.Как только магнит (или электромагнит) внутри устройства начинает вращаться, создается электродвижущая сила в виде наведенного напряжения. Это напряжение увеличивается с частотой вращения двигателя, пока, наконец, не достигнет значения, которое при равенстве напряжению источника питания ограничивает или полностью отключает ток двигателя. - Это немного похоже на сообщающиеся сосуды: если у нас есть два бака, заполненных водой в разной степени, то после того, как мы открутим кран в соединительной трубе, через некоторое время уровни уравновесятся.Применительно к электродвигателю это означает, что существует скорость вращения двигателя с магнитами, при которой указанные выше индуцированное напряжение равно напряжению источника питания. Это означает, что двигатель не будет развивать более высокие обороты без энергозатратного управления. Это не та ситуация, с которой нам хотелось бы столкнуться, двигаясь со скоростью 140 км/ч по трассе, когда мы вдруг заметили бы, что расчетный в начале пути запас хода падает, — говорит доктор. Марчин Вардах. Звучит опасно; и если да, то почему инженеры до сих пор не занимались этой проблемой? Самый простой ответ — потому что это не было проблемой.Во-первых, электродвигатели с постоянными магнитами в массовом масштабе используются всего около десятка лет, хотя они уже были созданы в первой половине 20 века. сплавы с неодимом (который используется, в том числе, в наушниках; что интересно, двигатель, используемый в автомобилях Tesla, не использует постоянные магниты в приводном двигателе). - Во-вторых, эта проблема возникает в основном у электроприводов с регулируемой в широком диапазоне частотой вращения.В электромобилях двигатели работают на высоких оборотах до 13 000 об/мин. оборотов в минуту и ​​должен создавать огромный крутящий момент с самого начала. С другой стороны, в системах привода, в которых применялись и до сих пор используются в основном тихоходные двигатели, описанная проблема не возникает. Однако в случае с электромобилем это не так. Здесь двигатель не только должен работать с высочайшим КПД во всем рабочем диапазоне, но и соответствовать нормам безопасности.А высокая скорость означает высокое напряжение, — объясняет доктор. Петр Паплицкий.

Секрет решения щецинских ученых заключается в особой конструкции магнитопровода двигателя.Благодаря этому они могут управлять явлениями, происходящими в устройстве. Ключевым моментом является ослабление магнитного поля постоянных магнитов при постоянном контроле наведенного напряжения и потерь в двигателе, особенно при высоких скоростях вращения. - В результате получается двигатель, гарантирующий хорошую динамику в момент разгона и развитие высоких скоростей автомобиля. Эти особенности означают, что его можно успешно использовать в качестве экономичного привода для электромобилей, — поясняет проф. Палка.

Если однажды будет создан польский электромобиль, было бы хорошо, если бы он потянулся к таким инновационным решениям, а не просто к свободному набору элементов, доступных на рынке.

Четвертый выпуск журнала «Эврика! DGP - мы открываем польские изобретения», на которую мы пригласили польские университеты, научно-исследовательские институты и научные подразделения Польской академии наук.До 16 июня в журнале DGP мы будем описывать изобретения, номинированные нашей редакцией на главную награду, отобранные из 68 представленных вузами и институтами.

Конкурс будет подведен в конце июня.Приз 30 тысяч. злотых для команды, которая работала над изобретением-победителем, финансируемым Покровителем польской науки - Polpharma, и рекламная кампания для университета или института на сумму 50 000 злотых. PLN в СМИ INFOR Biznes (издатель Dziennik Gazeta Prawna) финансируется организатором.

из Западно-Поморского технологического университета / Дзенник Газета Правна Дзенник Газета Правна Дзенник Газета Правна Дзенник Газета Правна Дзенник Газета Правна Дзенник Газета Правна Дзенник Газета Правна Дзенник Газета Правна Дзенник Газета Правна .

лучших бытовых конструкций магнитных и электромагнитных двигателей

Тема магнитных двигателей не раз обсуждалась на страницах Гаджетомании. Это неудивительно, ведь видение собственного и дешевого в постройке устройства FED (устройства свободной энергии) может способствовать огромному снижению затрат на электроэнергию.

Тема магнитных двигателей обсуждалась в Гаджетомании не раз. Это неудивительно, ведь видение собственного и дешевого в постройке устройства FED (устройства свободной энергии) может способствовать огромному снижению затрат на электроэнергию.

Наверняка в комментариях появятся комментарии скептиков по поводу этих устройств. Некоторые считают, что магнитные двигатели — это лекарство от роста цен на энергию. Другие твердо говорят, что двигатели могут работать и работают, но их эффективность, долговечность или то, как они работают в целом, оставляет желать лучшего. Я не специалист в физике, поэтому ограничусь изложением наиболее интересных идей и проектов.

Может быть, это вдохновит вас на создание такой штуковины, и, приложив немного усилий, может быть, кто-то заменит ветряк магнитным двигателем, сделанным в основном из мешка с неодимовыми магнитами.

Магнитный мотор китайцы будут выпускать его массово!!

  1. Начнем с толстой трубы. Такой магнитный колосс должен произвести впечатление на одного человека. Представьте, сколько электричества можно было бы получить из этой машины, установив маховик и генератор постоянного тока на ось вращения.

Реплика магнитного двигателя Steorn

  1. Проект немного меньшего размера, который можно легко сделать дома.
  1. Конструкция электромагнитного двигателя, который производит больше энергии, чем потребляет.Если бы только ежемесячно расходуемая сумма денег влияла на то, чтобы на счет поступало все больше и больше злотых...
  1. Эта модель отличается большей точностью, но число оборотов в минуту компенсирует время, затраченное на ее строительство.
  1. Типичный двигатель в этом случае может никто и не увидит, но интересен сам механизм работы. Может быть, этот проект вдохновит кого-то на создание собственного уникального мода?

03 - Beyond Steorn, настоящий двигатель с постоянными магнитами.

  1. В данном случае мы имеем дело с немного ручной версией движка. Но теперь, когда вы видели несколько других моделей, это не должно быть препятствием для создания полностью бессрочной версии. Главная привлекательность этого материала — продемонстрировать силу этого магнитного ребенка. Вы только посмотрите, как быстро и эффективно разгонялся мотор при довольно большой нагрузке.
  1. А теперь еще кусочек. Простой дизайн для копирования и тестирования.

Маховик/генератор магнитного двигателя3

  1. Другой магнитный двигатель.Аналог одного из предыдущих проектов.

МАГНИТНЫЙ ДВИГАТЕЛЬ (9 Harmonic MPMM k-Mets)

  1. Настольный вариант двигателя. Для строительства вам понадобится только изолента, неодимовые магниты и крышка от бутылки.
  1. Вы должны знать этот двигатель и его конструктора. Некоторое время назад эта пара была на высоте в СМИ. Скажите честно, вы изменили свое мнение о достижении этого джентльмена после просмотра нескольких предыдущих фильмов?
  1. Это видео - квинтэссенция сегодняшней Видеомании.В раздоре вы становитесь свидетелем производства электричества магнитным двигателем.

0-PMG-2 FULL CIRCLE

  1. Модель построена на магнитных воротах. Эффективен, как и предыдущие двигатели.

Магнитный двигатель Свободная энергия Вечный двигатель

  1. Короткое видео, показывающее, как обычные люди, а не только врачи и профессора, могут построить собственное магнитное устройство и направить одобрение в адрес коммунальной компании.

Может быть, у вас уже возникло желание бросить все к черту, лишь бы броситься в водоворот работы над магнитным двигателем.Однако прежде чем начать, сделайте набросок конструкции собственного устройства и проверьте цены на неодимовые магниты. При их покупке следует ознакомиться с основной информацией о полярности, поляризации, плотности энергии, а также о материале, из которого они изготовлены.

.

История электродвигателя

Электродвигатель – это электрическая машина, в которой электрическая энергия преобразуется в механическую энергию.

1821 Британский физик Майкл Фарадей представляет первый работающий электродвигатель постоянного тока в Королевском институте Великобритании (1). Затем ученый связал свое устройство с «электрическим вращением» и понял явление потока электрических зарядов как вибрацию.

Открытие Фарадея сразу же вызвало протесты другого английского физика и химика, Уильяма Хайда Волластона, который также сконструировал электродвигатель на основе явления электромагнетизма, но его устройство не сработало. Эксперимент, представленный Фарадеем, был довольно прост — на дно ртутного сосуда физик поместил магнит с выступающим над металлом концом и погрузил один конец свободно висящей проволоки в ртуть. Провод вращался, поскольку его противоположный конец был запитан от химической батареи.Это был первый униполярный двигатель с двигателем Лоренца. Однако после этого открытия начальство вынудило Фарадея отказаться от дальнейших исследований, хотя через несколько лет он вернется к ним. Успешно.

1. Модель электродвигателя Faraday

1822 г. Английский математик и физик, самоучка Питер Барлоу разрабатывает собственную модель униполярного двигателя, так называемую возле Барлоу (2). Он поместил подковообразный электромагнит на деревянную основу с желобом, наполненным ртутью, а сверху установил звездообразное колесо, которое могло свободно вращаться.Когда плечо звезды погружено в ртуть, электрическая цепь замыкается, и сила Лоренца магнитного поля, действуя на электрические заряды на поверхности звезды, заставляет колесо вращаться. В том же году Майкл Фарадей записал в своем дневнике: «преобразовать магнетизм в электричество».

2. Рисунок эксперимента Питера Барлоу

1829 Венгерский физик Аниос Едлик строит то, что он называет «электромагнитным ротором». Он состоит из статора, ротора и коллектора.Устройство преобразует электрический ток непосредственно в механическое вращательное движение. Изобретение, однако, не нашло применения, да и сам Джедлик не придал ему большого значения.

1831 Майкл Фарадей представляет результаты своего последующего исследования Королевскому обществу, вызвав настоящий ажиотаж среди ученых того времени. После серии экспериментов он построил медный диск (также называемый динамо-машиной) и поместил его между полюсами постоянного магнита в форме подковы. Электрический ток генерировался при отвинчивании системы рукояткой.И наоборот, при подаче питания система действовала как электродвигатель. Диск Фарадея, хотя и был эффективным, давал небольшой ток и напряжение. Гораздо важнее было описать явление электромагнитной индукции.

1832 г. Американец Джозеф Генри разрабатывает первый прототип маятникового электродвигателя для академического использования. Интересно, что маятник питался от самопереключающегося электромагнита, питаемого от гальванических элементов. Электромагнит попеременно касался одного из двух элементов батареи, заставляя полярность качаться и качаться в противоположном направлении.Генри назвал свой двигатель «философской игрушкой».

1834-1835 Русский физик Мориц Якоби отправил в Академию наук в Париж проект первого коллекторного электродвигателя постоянного тока (3), работающего от электрической батареи. Летом 1835 года он опубликовал доклад на эту тему, за что получил степень почетного доктора Кенигсбергского университета.

Несущая конструкция этого двигателя, который часто считается первым настоящим электрическим роторным двигателем, была сделана из дерева. Устройство состояло из: цилиндрического диска с четырьмя подковообразными магнитами, цилиндрической рамы с четырьмя подковообразными магнитами, кованого вала, обмотки из медной проволоки, четырех коллекторных дисков (механических выпрямителей), четырех щеток (рычагов питания) и четырех контактные трубки с ртутным наполнением.

Все питалось энергией от четырех вольтовых столбов (напряжение от 4 до 6 В). В то время это был непревзойденный мотор (длительная мощность: 15 Вт, частота вращения: 60-130 об/мин). Его даже опробовали в качестве привода для 28-метровой лодки с четырнадцатью пассажирами.

3. Чертеж двигателя Moritz Jacobi

1834-1840 Томас Дэвенпорт, американский кузнец из Вермонта, строит электродвигатель постоянного тока с батарейным питанием на основе паровой машины.Его вдохновил поршень, движущийся внутри цилиндра под действием пара. В своем двигателе он использовал движение магнита внутри катушки с током. Устройство использовалось для питания модели очереди; благодаря его идее - уже электрический.

Очарованный электромагнитами, Давенпорт три года спустя запатентовал двигатель для привода дрели и токарного станка. Устройство достигло 450 об/мин. Еще через несколько лет изобретатель разработал более эффективный двигатель для печатной машины. Выпускается с 1840 г.им журнал «Электро-магнит и механика-интеллигент» был первым журналом по электричеству и первым, напечатанным на электрической машине.

1836 г. Уильям Стерджен, английский инженер-электрик, использовал открытие Фарадея в практических целях, и его электромагнит смог выдержать вес, превышающий его собственный. Компания Sturgeon усовершенствовала несколько компонентов двигателя. Сначала он разработал электромагнит на сердечнике из мягкого железа, затем в 1832 г. изобрел коллектор, применяемый в электродвигателях, а в 1836 г. — коллектор для электродвигателей.построил гальванометр с подвижной катушкой. Его конструкции использовались другими конструкторами первых двигателей постоянного тока.

1840 Англичанин Уильям Тейлор запатентовал реактивный двигатель, который производит вращательное движение без использования кривошипных механизмов. Устройство имело четыре электромагнита, последовательно активируемых механическим коммутатором, управляемым положением ротора. На вал машины надевался диск из токопроводящих сегментов из медного листа и изолирующих сегментов из слоновой кости.Для привода локомотива использовался четырехдиапазонный двигатель Тейлора.

1842 г. Шотландский изобретатель Роберт Дэвидсон испытывает пятитонный локомотив, каждая ось которого приводится в движение двумя двухфазными реактивными двигателями. Поезд проехал полторы мили по недавно построенной железной дороге, соединяющей Глазго с Эдинбургом, со скоростью примерно 6,5 км/ч. В специальном вагоне, который тянул локомотив, были не очень эффективные цинковые аккумуляторы. Проект Дэвидсона, хотя и вызвал интерес и нашел спонсоров, был признан слишком затратным.

1849 При финансовой поддержке Сената США Чарльз Графтон Пейдж — вашингтонский врач, химик и изобретатель — начал строить локомотив с электромагнитным приводом. Кстати, он сконструировал несколько новых моделей электродвигателей. Двигатель Пейджа имел два отдельных электромагнита и рычажную систему с шатуном, позволяющую передавать два приводных импульса на маховик за один оборот. Паж увеличил мощность электродвигателей с 8 до 20 л.с.

1867 Презентация доклада Вернера Сименса «О преобразовании механической энергии в электрический ток без использования постоянных магнитов» в Прусской академии наук.

Немецкий физик и конструктор-самоучка открыл явление самовозбуждения, вызванное наведенным в обмотках ротора напряжением. И ему пришла в голову идея использовать их для электрических машин, например, без батареи или рукоятки.

Небольшого магнетизма Земли было достаточно, чтобы сначала произвести слабый ток (самоиндукция). Это поле усилилось и достигло полной мощности через несколько оборотов. Динамоэлектрическая машина, основанная на изобретенном Сименсом двойном Т-образном якоре (ротор с двумя Т-образными сердечниками, обмотанными в катушку), производила электричество дешево и с гораздо более высоким КПД, чем прежде.

В 1879 году Вернер Сименс, имея в своем распоряжении мощный электрогенератор, приступил к строительству первого в мире электровоза на 150 В (4), питаемого от третьего рельса. А через два года был готов первый электрический трамвай.

4. Презентация электропоезда Сименс

1880 Томас Алва Эдисон создает первый электрический микромотор. Он приводил в действие электрическую ручку для изготовления точечных множительных матриц.Он имел размеры 2,5×4 см и достигал ок. 4 тыс. штук. об/мин, приводя в движение вибрирующую иглу в держателе. Иголкой проделывались отверстия в матрице, которые образовывали контуры букв. Двигатель питался от аккумуляторов. Электрическая ручка широко использовалась для копирования документов до того, как была изобретена пишущая машинка.

5. Статья о двигателе, который изобрел Джулиан Спраг

.

1886 г. Офицер американского флота Фрэнк Джулиан Спраг представил два важных изобретения: безискровой двигатель и двигатель постоянной скорости.Его двигатель первым поддерживал постоянную скорость при переменной нагрузке (5).

Модель

Sprague также запатентовала систему рекуперативного торможения, в которой приводной двигатель используется для восстановления питания основной энергосистемы. Этот механизм нашел практическое применение в электровозах и электроподъемниках.

1887 Никола Тесла строит первый асинхронный двигатель переменного тока в своей мастерской в ​​Нью-Йорке (6). В двигателе переменного тока статор состоит из кольца пар электромагнитов, которые создают вращающееся магнитное поле.Энергия связана с этими электромагнитами, чтобы индуцировать поле.

Блестящая идея Теслы заключалась в том, чтобы одновременно питать электромагниты попарно. Когда одна пара полностью активна, другая полностью отключена. Когда катушки находятся под напряжением, они создают магнитное поле, индуцирующее электрический ток в роторе, который согласно закону Фарадея является электрическим проводником. Новый ток создает собственное магнитное поле, которое, согласно закону Ленца, пытается противодействовать создавшему его полю.Эта «игра» в ловлю двух магнитных полей в конечном итоге раскручивает ротор.

6. Первый электродвигатель Tesla

1887 г. Два физика - немец Фридрих Август Хазельвандер (7) и американец К.С. Брэдли — независимо друг от друга разрабатывают трехфазный синхронный двигатель, который впоследствии использовался в роботах и ​​электромобилях.

В роторе есть постоянный магнит, так как он вращается внутри обмотки. Эта обмотка питается трехфазным напряжением (каждая фаза сдвинута на постоянный угол сдвига фаз), что создает в статоре вращающееся магнитное поле.Ротор в виде постоянного магнита вращается синхронно с вращающимся полем, и его вращение зависит только от частоты сети.

Напряжение не влияет на вращение ротора двигателя, поэтому получаем постоянную скорость вращения вне зависимости от колебаний нагрузки. Синхронные двигатели более эффективны, чем асинхронные двигатели аналогичной мощности, потребляют меньше энергии и занимают меньше места.

7. Двигатель Haselwander

1889 г. Русский инженер польского происхождения Михал Доливо-Добровольски запатентовал трехфазный двигатель с короткозамкнутым ротором.Изобретатель работал над различными решениями, конкурирующими с запатентованными идеями Теслы.

Создано, среди прочего, двигатель с фазными роторами (с возможностью подключения пускового резистора), т.е. двигатель с кривошипным кольцом. Он также построил трехфазный автотрансформатор, который успешно применил в 1892 году для запуска асинхронного двигателя, что улучшило работу машин этого типа. Асинхронный двигатель Добровольского (8) с высоким пусковым моментом стал в 1891 г.самая большая достопримечательность Всемирной электротехнической выставки, организованной во Франкфурте-на-Майне.

8. Электродвигатель асинхронный современный

1900 Чарльз Протеус Стейнмец, американский инженер, работавший на GM над явлением гистерезиса и вызываемыми им потерями, разработал теоретическую модель гистерезисного двигателя. Хотя эти устройства стали использоваться в массовом масштабе только после его смерти, теоретические концепции Штейнмеца оказались успешными на практике.

Благодаря взаимодействию гистерезисного момента с асинхронным моментом эти двигатели устойчиво работают при перегрузках, переключаясь с синхронных характеристик на асинхронные. Пусковой крутящий момент обычно больше максимального крутящего момента, так что правильная скорость достигается двигателем практически сразу после включения. Он не имеет подвижных контактов, что обеспечивает его длительную, безотказную и бесшумную работу.

1952 Sigma Instruments представляет шаговый двигатель Cyclonome, который считается первым практичным двухпроводным шаговым двигателем.Он преобразует электрические импульсы в механические движения в соответствии с правилом, согласно которому один импульс равен одному удару под определенным углом. Это были двухфазные, двунаправленные двигатели с постоянными магнитами со скоростями 360, 450, 600 и 900 об/мин при 60 Гц.

1962 г. Первая коммерчески доступная модель бесщеточного двигателя (9) была названа революционной из-за отсутствия громоздкого механического коллектора и щеток. В результате эти устройства сразу же были опробованы, например, на роботах и ​​в авиации.В то время ограниченное использование бесщеточных двигателей было связано с малой мощностью, которую они генерировали.

9. Бесщеточный двигатель

1980 Японец Тошиику Сашида разрабатывает клиновидный ультразвуковой двигатель. В качестве движущей силы он использует пьезоэлектрический эффект (волны или акустические колебания превращаются в механическую работу). Результатом стал двигатель с исключительно хорошими характеристиками крутящего момента на низких скоростях и соотношением мощности к весу, который уже нашел применение в механизмах автофокусировки фотоаппаратов, медицинском оборудовании, подвергающемся воздействию сильных магнитных полей, и в автомобильных аксессуарах.

2019 Группа польских конструкторов представляет инновационный приводной модуль - водяной двигатель. Это комбинация электродвигателя и насоса высокого давления с целью снижения энергопотребления и увеличения времени движения автомобиля на одной зарядке, а также замедления износа двигателя и аккумуляторов. Механизм действия достаточно прост.

Насос высокого давления с электродвигателем гонит воду, что приводит в движение крыльчатку в камере. Вода нагнетается в камеру через трубку толщиной 1 мм под давлением до 120 бар.Круговая струя воды заставляет вращаться пятилопастный ротор, а затем проходит во вторую камеру, где меньший ротор использует тот же поток воды, который уже выполнил свою работу в первой камере.

Может использоваться в качестве генератора переменного тока для привода второго независимого ротора, соединенного с электродвигателем, или в качестве увеличенной площади поверхности для первого двигателя для достижения еще лучших результатов.

Классификация электродвигателей по способу питания

И.Питание от постоянного напряжения 90 100 90 101

Эти двигатели могут работать взаимозаменяемо как двигатель или генератор. В последнем случае ротор приводится в движение механической энергией, подводимой извне — вырабатываемая электроэнергия поступает на клеммы обмотки якоря. Большинство двигателей постоянного тока являются коллекторными, т. е. такими, в которых обмотка якоря питается током через коммутатор. Однако есть много разновидностей, которые не имеют коммутатора или коммутация происходит электронным способом.

  • Электродвигатель с независимым возбуждением - его обмотка возбуждения питается от отдельного источника напряжения (кроме обмотки якоря). Благодаря идентичным свойствам двигатели с независимым возбуждением рассматриваются вместе с двигателями с возбуждением от постоянных магнитов. В основном они используются в качестве двигателей постоянного тока с широким диапазоном изменения скорости вращения. В обоих случаях магнитный поток постоянен, а напряжение якоря (ротора) используется для изменения скорости вращения.При постоянном напряжении якоря момент уменьшается с увеличением частоты вращения. Ток якоря пропорционален крутящему моменту.
  • С самовозбуждением - двигатель с электромагнитом в статоре может иметь обмотки статора и ротора, соединенные последовательно, параллельно (шунтом) или смешанно. Способ подключения определяет тип двигателя. Эти двигатели также могут быть адаптированы для питания переменным током. Универсальными их называют потому, что направление вращения ротора не зависит от полярности приложенного напряжения, потому что магнитное поле в статоре и роторе одновременно меняет свое направление на противоположное.Если двигатель должен работать на постоянном токе, статор изготавливается из твердого материала. Однако при питании переменным током он состоит из пакета изолированных листов, что снижает потери энергии на вихревые токи.
  • Электрический шунт - Двигатель постоянного тока, в котором обмотка статора соединена параллельно с обмоткой ротора. Основное преимущество этой версии заключается в том, что при нагрузке ротора тормозным моментом обороты немного снижаются.Скорость отжима регулируется изменением напряжения питания (чем выше напряжение, тем больше обороты) или включением в обмотку возбуждения дополнительного последовательного сопротивления (чем больше сопротивление, тем больше обороты).
  • Серия - двигатель с обмоткой возбуждения в статоре, включенной последовательно с обмоткой якоря. Характеризуется высокой зависимостью скорости вращения от нагрузки. Уменьшение нагрузки вызывает увеличение скорости вращения (теоретически до бесконечно большой) и возникает риск т.н.обкатка и, как следствие, разрушение двигателя. Это серьезный недостаток, поэтому такие типы двигателей нельзя включать без нагрузки. Двигатели постоянного тока серийные применяются в основном в электротяге (приводы локомотивов, трамваев, троллейбусов) и автотранспорте (аккумуляторные тележки, автомобильные стартеры), а также в приводах кранов, вентиляторов и т.п.
  • Серийно-шунтирующий - двигатель с обмоткой возбуждения в статоре, соединенной с обмоткой якоря смешанным образом (часть последовательно и часть параллельно).Обладая достоинствами серийного двигателя - высоким крутящим моментом в широком диапазоне оборотов и зависимостью частоты вращения от нагрузки - лишен своего главного недостатка - возможности разгона при отсутствии нагрузки. Обычно используется в качестве двигателя большой мощности там, где есть тяжелый пуск: для привода прокатных станов, прессов, кранов и в качестве движителя морских палубных механизмов.
  • 90 125
    II. Питание от переменного напряжения
    • Однофазный короткозамкнутый - тип асинхронного электродвигателя, у которого ротор представляет собой цилиндр, изготовленный из пакета ферромагнитных листов, с прорезями, заполненными алюминиевыми или медными стержнями, соединенными с торцевыми кольцами из того же металла.Стержни вместе с кольцом образуют своеобразную металлическую клетку.
    • Серийный номер - питание от сети переменного тока напряжением 230 В. Имея малые габариты, относительно большую мощность, высокий пусковой момент и высокую скорость вращения, этот двигатель нашел многочисленные применения в бытовой технике, например, в пылесосах, сушилках, соковыжималках , миксеры, а также в электроинструментах.
    • Трехфазный короткозамкнутый - в этом двигателе после подключения напряжения от трехфазной сети к обмотке статора создается вращающееся магнитное поле, скорость вращения которого зависит от частоты сети и числа двигателей столбы.Вращающееся поле в статоре вызывает протекание тока через стержни ротора за счет индукции, создавая электродвижущую силу и крутящий момент ротора. Скорость вращения ротора всегда должна быть меньше синхронной скорости вращающегося поля.
    • Трехфазный линейный - этот двигатель создает поступательное движение без использования шестерен, преобразующих вращательное движение в поступательное. Он работает аналогично роторному двигателю, в котором статор и ротор линейно удлиняются или укорачиваются для получения желаемого диапазона движения.
    • Кольцо трехфазное - Тип асинхронного двигателя с фазным ротором, в котором концы обмоток ротора выведены через контактные кольца и щетки наружу машины. Это дает возможность подключать так называемые обмотки к обмоткам. стартер, то есть резистор с числом фаз, соответствующим числу фаз в двигателе. Это позволяет начать с регулировки скорости вращения и, в основном, крутящего момента.
    • Двухсторонний синхронный - скорость вращения ротора здесь равна скорости вращения магнитного поля, создаваемого неподвижными обмотками статора.
    • Электродвигатель асинхронный, двигатель асинхронный - электрическая машина, преобразующая электрическую энергию в механическую, в которой ротор вращается с салазками по отношению к вращающемуся магнитному полю, создаваемому обмоткой статора.

    Мирослав Усидус 90 160

    См. также:

    Как шарикоподшипники становятся электродвигателем...
    Где красивая Тесла, а где мрачная Катанга

    .

    Как работает двигатель в электромобилях?

    Принцип работы электродвигателя до сих пор многим непонятен. Несмотря на то, что на улицах польских городов появляется все больше автомобилей с электроприводом, до сих пор немногие водители знают, как на самом деле работает экологический привод. Поэтому мы решили раскрыть большинство технологических секретов, связанных с электронными автомобилями. Что стоит знать о работе двигателя с нулевым уровнем выбросов?

    Как и в случае с автомобилями внутреннего сгорания, двигатель является сердцем электромобиля.Однако в электромобилях он питается от электричества. Какие отличия с ним связаны? Первично о весе. В то время как бензиновые или дизельные агрегаты достаточно тяжелые - вес бензиновой версии с объемом 1.4 составляет около 70-100 кг (в случае дизелей может быть и больше), например, мотор в Tesla Model S весит около... 45 кг. Электродвигатель работает в двух режимах. В первом он занимается преобразованием электрической энергии в механическую. Во втором, срабатывающем при торможении, механическая энергия становится электрической, перезаряжая электрохимический запас энергии.

    Принцип действия тягового электродвигателя, очевидно, основан на вращении. Однако способ работы зависит от типа рассматриваемой конструкции. В случае двигателей постоянного тока ротор движется из-за наличия противоположных магнитных полей. Коммутаторы являются важным элементом этого процесса. В зависимости от типа двигателя коллектор может управляться механически или электрически.

    Двигатель постоянного тока и синхронный двигатель


    Несколько иная ситуация в случае с синхронным электродвигателем.При такой конструкции необходимо использовать трехфазное вооружение, создающее вращающееся магнитное поле. Это приводит в движение ротор. В зависимости от типа конструкции существуют различия в строении роторов. Синхронный двигатель, как следует из названия, должен работать синхронно. Для этого используются так называемые замедление ротора по отношению к вращающемуся полю, и эта величина выражается в градусах вращения вала. Практическое значение угла замедления, обеспечивающего синхронную работу, составляет ок.60 градусов. Недостатком синхронных двигателей является их сложный запуск, но производители электромобилей справились и с этой проблемой. Так называемое инверторы. С одной стороны, система электропривода характеризуется идеологической простотой своей конструкции, т.е. электродвигатель соединен с трансмиссией. Простой механизм с одним фиксированным передаточным числом и дифференциалом соединяет его с колесами, что позволяет как управлять автомобилем, так и рекуперировать кинетическую энергию.С другой стороны, это система, которая дополнительно состоит из систем управления - силового электронного преобразователя и электрохимического накопителя энергии с системой охлаждения и зарядки.

    Аккумуляторы, зарядное устройство и… блок управления


    Роль электрохимического накопления энергии совершенно очевидна. Это основной резервуар электроэнергии, используемой в автомобиле. Благодаря накопленной энергии автомобиль может обеспечить необходимый запас хода и питать бортовые устройства.Когда дело доходит до восполнения накопленных запасов энергии, это делает система зарядки, подключенная к электросети через специальный порт и кабель-переходник.
    Хотя в системе электропривода не происходит сгорания, отдельные компоненты из-за их общего КПД выделяют тепло во время работы и требуют охлаждения. Система охлаждения используется не только для охлаждения компонентов системы привода, но и отвечает за защиту аккумулятора от слишком высоких или низких температур.Большинство представленных на рынке моделей имеют аккумуляторы с жидкостным охлаждением. Это напр. в моделях Tesla, Opel Amper E и BMW i3. Альтернативой может быть воздушное охлаждение (например, Renault Zoe и Hyundai Ioniq Electric) или пассивное охлаждение (Nissan Leaf и Volkswagen e-Golf). Пассивная модель основана на отводе тепла через стенку корпуса аккумулятора.

    Электродвигатель меняет конструкцию автомобилей


    Принцип работы электродвигателя имеет два существенных преимущества.Прежде всего, чистая система привода с электронным двигателем, конечно, с нулевым уровнем выбросов. Его работа не выделяет никаких вредных соединений в атмосферу. Во-вторых, это полностью меняет способ проектирования транспортных средств. Двигатель требует меньше места, чем двигатель внутреннего сгорания. Кроме того, инженерам не приходится думать о расположении таких элементов, как коробка передач, сложная трансмиссия или даже выхлопная система.
    Благодаря этому автомобили получают не только более низкую и обтекаемую переднюю линию, но и меньшие габариты кузова, они могут стать просторнее.Например, Volkswagen I.D., хотя размерами кузова должен напоминать Golf, вместимость салона будет ближе к Passat. Также стоит отметить, что работа системы электропривода энергоэффективна до 95% и связана с высоким крутящим моментом, доступным практически на взлете. Эффект? Новый Nissan Leaf способен разогнаться до 100 км/ч за 7,9 секунды, а BMW i3 — всего за 6,9 секунды. Это значение недостижимо, например, для мощного дизеля, установленного в сопоставимом компакте.

    .90 000 электриков во время наводнения - могут ли они убить вас электрическим током?

Наводнения, к сожалению, становятся все более частым явлением, вызванным изменением климата. Что будет, если и нас догонят после электрификации автопарка на европейских дорогах? Ведущие программы Motor MythBusters задались целью выяснить, что происходит, когда электромобиль погружают в воду. Эксцентричный водитель Tesla также провел свои тесты. Водителям удалось уйти живыми? Может быть, именно электрика будет более «защищенной от затопления», чем традиционные двигатели внутреннего сгорания?

Двигатель внутреннего сгорания и затопление

Ключевой вопрос заключается в том, был ли залит автомобиль при стоянке на стоянке или при работающем двигателе.

Залив двигателя внутреннего сгорания во время движения особенно опасен, что не означает, что при его выключении ущерб будет меньше. Однако во время движения автомобиля рискует засосать воду в двигатель . Кроме того, попадание воды в выхлопную систему автомобиля может иметь тяжелые последствия. Поэтому не рекомендуется ездить по воде, уровень которой выше уровня колес автомобиля.

- Самым серьезным, немедленным последствием является разрушение самого агрегата при подсосе воды двигателем - поясняет Адам Ленорт, эксперт сети СТО ПрофиАвто Сервис для портала WP Autokult - В большинстве случаях ремонт нерентабелен и выход будет искать второй мотор, самый б/у, - доп.

Иная ситуация в случае внедорожников и внедорожников, где выхлопная система расположена немного выше. Однако даже в автомобилях, лучше приспособленных к сложным условиям, рисковать не стоит: после залива может выйти из строя не только двигатель, но и коробка передач .

Погружной электродвигатель

Электродвигатель имеет только одну движущуюся часть, а именно вращающийся приводной вал, вращаемый магнитным током. После отключения питания не будет никакого движения, которое могло бы быть вызвано всасыванием воды.

Однако, как известно, вода очень хорошо проводит электричество, а для вождения электромобиля требуется много энергии. Самые мощные электромобили, такие как Porsche и Tesla, имеют высоковольтные аккумуляторные системы, которые выдают 800 вольт при максимальной эффективности и пиковом токе 100 ампер.

Конечно, автопроизводители защищают электронику от непогоды как могут, но достаточно ли этого количества щита, чтобы защитить кого-то от смертельного удара, если что-то пойдет не так?

Электромобиль убьет вас электрическим током? Эксцентричный водитель Tesla проверяет

Мы уже знаем, что моторы электромобилей не могут всасывать воду и гаснуть.

Однако при затоплении мы проверяем всю бортовую электронику. Зная, как вода влияет на электричество, можно предположить, что мы испытываем и собственную жизнь.

Сумасшедший водитель Тесла , похоже, не интересовался этой темой. На видео ниже, снятом в Шанхае, мы видим, как он погружается на электромобиле в затопленную улицу.

Судя по тому, что было записано, водитель и машина остались живы. Не исключено, однако, что имелись более серьезные повреждения, которые станут заметны при дальнейшей эксплуатации автомобиля.

Разрушители мифов об автомобиле

Разрушители мифов об автомобиле — американская программа, основанная на рискованном развенчании автомобильных мифов.

В эпизоде ​​Bisi Ezerioha Фэй Хэдли и Тора Беллечи решили узнать, что произойдет, если электрика полностью погрузить в воду.

Из энтузиастов программы именно Тори Беллечи вызвалась управлять электромобилем Motor Mythbusters , который проезжал через бассейн глубиной 2 метра.

Был один гол. Транспортное средство должно было добраться до конца бассейна самостоятельно.

Команда, однако, опасаясь поражения электрическим током Тори, решила разместить водительское сиденье на крыше.

Всю борьбу можно увидеть в следующем видео:

источник: WP autorult, motortrend.com, motocaina.pl

Статья является произведением по смыслу Закона от 4 февраля 1994 года. по авторскому праву и смежным правам. Все авторские права имеют право на Святозе.пл. Возможно дальнейшее распространение работы только с согласия редакции.

.

Смотрите также